A

5
Theorem N.4.24 (Chebyshev's Inequality). Suppose X has mean 4 and variance o2 .

\Forall t >0, P(X —p|<to) 21— .

Justification: Apply Markov's Inequality to ¥ = (—}%—’u) with r = t? to get
2

2 E| (X2 N\ 2
P[(—‘)—{}i) 21&2] < “L(—t?—)_l = tlg The event (Zf_g_ﬁ) > t? is the same as the
event |X — g| > to. The complement of this event is |X — p| < to and its probability must
fbe >1-— ;15 .0
For t = 1,2 and 3, Chebyshev's Inequality says that P(].X — | < o) > 0 (which doesn't say
much), P(|X — p| < 20) > 0.75 and P(|X — p| < 30) > 0.8888.
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CHAPTER 5 — Properties of random samples

In the first four chapters of C&B we have studied the theory of probability and random
variables. Now in Chapter 5 we will apply some of this theory in a statistical context. A
fundamental activity in statistics is the selection of a random sample from a populatlon in order

e ——— T

to discover something about the population. We will now study properties of random samples.

Definition CB.5.1.1. If X;,Xs,..., X, areindependent random variables having the same

distribution, we call them a random sample from a population with that distribution. We also
call them independent and identically distributed (i.i.d.) random variables.

Caution: When sampling from a finite population, if a sample is selected at random with
replacement, then it is a random sample (according to the definition above). If a sample is
selected at random without replacement, it is called a simple random sample. Thus our
terminology requires us to say, somewhat awkwardly, that a simple random sample is not a
random sample. If the population size is much larger than the sample size, then there is very
little difference between sampling with replacement and sampling without replacement, and so

in that case a simple random sample is almost a random sample.

The sample mean

The sample mean of a random sample X;,X,,..., X, is X = Xl'l-Xz:--—i-Xﬂ _

L+ Xo+ -+ X)),

Theorem CB.5.2.2(a,b). Suppose X;,Xs,...,X, isarandom sample.
(a) Suppose the population has mean . Then E(X) =

2
(b) Suppose the population has variance o?. Then Var(X )=%.

n
Proof: (a) E(X) = E[;(X; +Xo+--+ X)) = EE(X1+X2+--~+X,1) =
LE(X1) +E(Xe) +- +E(X.)] = S(utptotp) = Lnp =p

(b) Var(X) = Var[l(X1 +Xo 4+ X)) = %Var(Xl +X2 +- 4+ X,) =

(by independence) —Q—[Var(Xl)+Var(X2)+ -+ Var(X,)] = (cr +o? 4+ +0?) =
2
-T%fnJQ = %.D

Thus the mean and variance of the sample mean can be easily expressed in terms of the mean
and variance of the population. Can we express the entire distribution of the sample mean in

terms of the population distribution?

Theorem CB.5.2.3. Suppose Xi,Xz,...,X, isarandom sample from a population whose
distribution has mgf Mx (¢t). Then Mf(t) - [MX(%)]n
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Proof: Let Y = X1 + Xo +--- + X,,. By Lemma N.4.20, My(t) = Mxl (t)MX2 (t) e
My, (t) = [Mx(t)]". Since X = %Y, Theorem CB.2.3.5 implies that M(t) = My(%t) s
t\in
My () = [Mx(5))".O
Examples. (1) Suppose Xi,Xs,..., X, areiid. Normal(x,o?). From the table in the back
of C&B, we know My (t) = ent+go’t’ By the preceding theorem, M (t) =

t t o2 2
[e”(ﬁ)'*'%ag(ﬁ)z]” = ettt , which is the mgf of the Normal(y , £ ) distribution.
Therefore X ~ Normal(u, %) :

(2) Suppose X;,Xs,...,X, areii.d. Gamma(a, ). From the table in the back of C&B,
aqn
we know Mx () = (1_;‘&)0 By the preceding theorem, M (t) = [("1_——]6’1(_‘—_)) ] =
noa %
1 ey . ¢ S
(E—_—(ﬁ) , which is the mgf of the Gamma(na, ) distribution. Therefore
X ~ Gamma(na, £). |

Another theorem that can help in determining the distribution of X is the following.

Theorem CB.5.2.4 (Convolution Formula). Suppose X and Y are independent random
variables with pdf’s fx(z) and fy(y). Let Z =X +Y . Its pdfis

f2(2) = [ fx(@)fr(z - z)dz

Justification: Let Z=X+Y and W=X. Then X =W and Y =2 — W, and
the absolute value of the determinant of the Jacobianis 1. By (CB.4.3.2), fzw(z,w) =

(XY(-’J:,F) 1= fx(i‘)fY(y) [by independence] = fx(w)fy(z —w). Now fz(z) =

_,/\,%M

f fx(w)fy(z—w)dw = f fx(z)fy(z — z)dz, because the dummy variable of integration

can be denoted by z just as well as w. O

Example. (a) Suppose X and Y arei.i.d. Cauchy(0,1).
Let Z =X +Y . By the preceding theorem,

(o]

fz(Z) - ffX(x)fY(z_I)dI = f W(li.’rz) ’ 7!'(1'!‘(1?;'_3)2){13:

1 oo
F£(1+x2)(1+ eyl

A trick for integrating this integrand is to write

1 _ a1:c+ao +
(1+x2)(1+ (z—z)?) — 1+z2 1+ (z—z)?
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where a;,ag,b; and by do not involve z but may involve z. Now combine the two terms
on the right-hand side using a common denominator (1 + z2)(1 + (2 — z)?) and a numerator
of the form 5:3:1:3 +coz? + 1z 4+ co. The ¢;’s involve ay,a9,b1,b9 and z but do not
involve z. Set.c3 =0, ¢ =0, ¢; =0, cg = 1. Solve these four equations for the four

; 2 1 -2 3
unknowns ap,ag, by, b toobtain a; = 7795, G0 = 57 b = yy i by = yupe

Therefore,

o (o0} [o.¢]
1 2 z 1 1 -2 T
fz(2) = 2 { 4z+ 2* f e L v f 1+t dz + 753 f 1+ (z—z)? dz
—00 —00 -0

+ 4-32:2 f g d”’}'

Recognizing 7 +1 5 as a kernel of a Cauchy(0, 1) distribution and 7 + (z =1 +(31 o) 2

a kernel of a Cauchy(z, 1) distribution, we see that f Tzdr= f mdx = . Now

1 4 2 T
fz(z) = F{ 2 T 2+ [_-o[ 1+m2d$ __f -f—i—_(.;h":"x_)fdz]}‘

In the second integral put u = z — z to obtain

oo [ee]

oo [o.°] (.9}
T u+z _ r+z . poo z
f 1+ (z—zx)? dz = l—f—u2 du = 1+ z? de = f 1422 dz + f 1+ z? dz,
—00 = -0 ~00

-0

because the dummy variable of integration can be denoted by = just as well as u. Now

o0 (o0} o0
. - T - _ | = e
f1+$2d$ fl—!—(z—:r:)2 dz = fl-}-zzdm = e
—00 —00 . —00

Hence

4
fz(2) = }15‘{ 2t 4z-‘{?—z3 ("Tz)} = 7r(4-?-22) = 21r[1-&(§)2] ’

which is the pdf of the Cauchy(0, 2) distribution. Thus we see that if X; and X, are iid.
Cauchy(0, 1), then X; + X, ~ Cauchy(0,2).

(b) If X; and X, arei.i.d. Cauchy(0,1), what is the distribution of the samplc mean? Let
_ 1 T ¥4 2

Z=X1+Xoand U =1Z=2X. Then fy(u) = fz(z)|du| = fz(2u) - = ot (5

= m , which is the pdf of the Cauchy(0, 1) distribution. Thus we see that

X ~ Cauchy(0,1). More generally, it can be shown that if X1, X,,..., X, are iid.

Cauchy(@, o), then, surprisingly, also X ~ Cauchy(¢,0). |
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Overview of the textbook

Chapters 1-5: Theory of probability and random variables. (These chapters, which are

covered in ST 561, provide background that is needed to develop the theory of
statistical inference.)

Chapters 6-12: Theory of statistical inference.

Ch. 6: Fundamental concepts of statistical inference
Ch. 7: Estimation

(ST 562 covers Chapters 6 and 7)
Ch. 8: Testing
Ch. 9: Confidence intervals

(ST 563 covers Chapter 8, 9, and parts of 10, 11 and 12)

A general formulation of statistical inference

The goal of statistical inference is to analyze a set of data in order to conclude something
about the population from which it was taken (or can be imagined to have been taken). To
evelop a theory of statistical inference, we need a formal formulation. The data are formally
represented by a random vector X . The population is represented by the unknown
probability distribution of X . The distribution is typically described by the joint pmf or pdf
of X, denoted by f(z;8). The parameter vector @ is unknown and could be any vector in a

parameter set © . This formulation is quite general and includes the following examples.

(1) X3,..., X, i.id. Bernoulli(p), 0 < p< 1.
Here we have X = (X,,...,X,), 6 = p.

(2} Xu1,-.., X1y, iid. Bemoulli(p;), Xy, ..y Xap, Lid. Bernoulli(p;) , two independent
samples of Bernoulli random variables. Here X = (X110 s Xings Xoty oo, Xon,)

6 = (p1, ).

(3) Xi,..., X, independent, X; ~ Normal(fy + Byw;, o?).

Here X = (Xy,...,X,), @ = (Bo, £1,0?).

A more formal statement of the general goal of statistical inference is as follows:

Given a data vector X and a model for its distribution,

in the form of a family {f(:u@&) : 6 € ©} of possible pmf's or pdf's for X
we want to say something about what the true parameter vector 8 might be.

3
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Notation. We use X to denote the data when we are regarding it as a random vector (before
it was randomly selected from the population) and we use z (or Tobs) to denote the actual
observed values of the data. The symbol x also appears as a mathematical variable (or
dummy variable) in expressions like f(x) .

. e 2 i { : l_‘J'
Sufficient statistics T i s

{

[ A statistic is a function of the data that can be calculated from the data alone (i.e., it cannot
! involve any unknown parameters). We allow it to be vector-valued and often denote it by
J\ T(X) orsimply T'. Some examples are (1) T = X = S Xi/n,(2) T = (X,S) where
(5= ShAX = X0 —1),5) T = (X X)) T = X
A statistic is a random variable or random vector, but not every random variable or random

vector is a statistic. For example, if ¢ and o are unknown parameters, then
(X —p)/(a/ v/n) and S%/a6? are not statistics.

Given a set of data, it is often desirable to summarize the data in a few statistics. For example,
if a team of engineers measures the resistances of 100 resistors, then, rather than report all 100
resistances, they might report only the mean and standard deviation. That is, given a data
vector X', one often wants to reduce it to a summary statistic T(X). A good summary
statistic is both concise and informative. To be concise, it should not have very many
components. To be informative, T'(X) should contain most of the “information” that X
contains about @ (that is, about the population). Sometimes we are able to choose T(X) so
that it contains all of the information that X contains about 8. This is the idea of a sufficient

statistic. In precise mathematical terms, we make the following definition.

Definition 6.2.3. A statistic T"(X) is a sufficient statistic for 6 if the conditional distribution

of X given T'(X) does not involve @. (This is short for: the conditional distribution of X
given T = ¢ does not involve @ forall t.)

In other words, if we are given a sufficient statistic T'(X), there is nothing else in X that can
tell us anything about .

Example. X; ~ Binomial(ny, 8), X, ~ Binomial(ny, 8) (same 6), independent of one
another.

(@) Is T'= X, sufficient? Intuitively we would say no — let's verify this formally. We need
to find the conditional distribution of (X, X5)| X; = ;. Since X; = z; is given as a
constant, then we are concerned only with X, | X; = ;. Since X; and X, are independent

the conditional distribution of X, given X is the same as its unconditional distribution.

]
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(This follows from formulas (3.3.6) and (3.5.1).) The unconditional distribution of X, is
Binomial(n,, 8) , which involves 6. So X, is not sufficient.

(b) Is T = X; + X, sufficient? We need to find the conditional distribution of (X1, X3) |
X1+ X, =t.

P{(X1,X2) = (z1,22) | X1 + X3 = t} = P(A|B) = P(AN B)/P(B)

P{X =z, and Xo=zy and X;+X, :t}
P{X1+X2=t} ’

Note that the numerator is 0 if z; 4+ 25 # ¢. Also note that this case does not involve 0.
Now suppose 1 + z3 = t. Then the conditional probability is

P{X1=$1 and X2=:L‘2} B P{Xl =TI }P{Xz =.'D2}

- P{X;+X,=t} - P{Xi+Xo=t}
(z)ea—om= ()ema—oya= (m)(22)
= (nli-nQ)Bt(l_e)nl_HQ_t = (nltnz) )

which does not involve . So X; + X5 is a sufficient statistic,

(¢) Is T'= X; + 2X, sufficient? If x; + 2x9 = t, then

P{Xl =TI }P{Xg =:E2}

P{(X1,X2) = (z1,22) | X1 + 2X, =t} = P{X1+2X,=1]

There is no nice formula for P{X; + 2X, = t}, so let's just look at a particular case.
Suppose 1 =3, n9 =2, 1 =1, 2,=1. To figure out P{X; + 2X, = 3}, note that

X1 €{0,1,2,3} and X, € {0, 1,2} and the only pairs (z1,z;) that give z; + 225 = 3 are
(1,1) and (3,0). Therefore, P{X; + 2X, = 3} = P{(Xy, X2) = (1,2) or (3,0)}

- (f)elu = a)ﬁ(f)aiu — )+ (2)93(1 - 9)0(3)90(1 — §)?
= 66%(1—6)3 + 63(1 - 9)2.

Now we have
P{Xi=1}P{Xp=1} 66%(1-0)° _ 6—68
P{Xi+2X, =3} = GO2(1-0YP+03(1—0F ~ 6-5°

which involves €. So X; + 2X, is not sufficient.
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In general, a way to see whether or not T"(X) is a sufficient statistic, that is, to see whether or
not the conditional distribution of X | T involves the parameter vector @, is to form the ratio
fx(z;8)/fr(T(x);6) of the pmf's or pdf's and see whether or not @ cancels out. This is
what we did in parts (b) and (c) of the preceding example, using pmf's since the random

variables were discrete. Next we look at a continuous example.
Example 6.2.3. Consider a single observation X ~ Laplace with scale parameter §. That is,

1
the pdf of X is f(z;0) = %e—?lxi forall z € (—o00,00) forsome 6 > 0. (Note that we

justhave n = 1.) The textbook shows that T' = | X| is a sufficient statistic. Let's verify this
in a different way, by showing that § cancels out of the ratio fx (z;0)/ fr(z|:0).

First, we refer back to Chapter 4. Applying formula (4.4.2) to the transformation
T = h(X) = | X|, we obtain (as in Example 4.4.4):

fr(t) = fx(t) + fx(~t) forall t > 0.
(To arrive at this, note that for any value ¢ > 0, there are two values of z for which L =%,

namely zx =t and £ = — ¢, and note that it —1and |4(-p) = 1.) This formula is
y dt dt

true for any continuous random variable X .

1 =iir I eebiog -
€9|'+‘2‘?69| |:§e€.(So|X|

Inour case, fr(t;0) = f(t;60)+ f(—t;0) = 20

has an Exponential distribution.) Now

1
fx(z0)  FewH
fT(lml ;9) - %e—%}xl g

which does not involve 6. A
Examples 6.2.4, 6.2.6. X;, X, i.i.d. Normal(y,1).

(@) Is T'= X; + X, sufficient? In Example 6.2.4 it is shown that 7" is sufficient by using

results from sections 3.6 and 4.6.1. Let us obtain the same answer by looking at the ratio of
pdf's.

We know 7"~ Normal(2y,2) . The ratio fx(z;u)/fr(T(z);p) is

1 2 1 2
: 1 o olzp—m)* 1 —5(zg—p)
flu) flmp) V=€ Tt
fr(zitzo ;) — PR TRy
Vir €

1 1 1 1
= Vgexp[ﬁ 3(T1 — 1) = 5(z2 — p)? + (21 + 22 — 2)7].

It is not yet obvious, but x cancels out. To see this, note that

(T4 + 22 ~ 2u)? = [(z1 — p) + (22 — p))?
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= (z1 — p)* + (z2 — )% + 2(z1 — p)(z2 — 1)
and hence

= 3(@1 = )’ = §(@2 — W) + (21 + 22— 20)°
= = 1(@ =0 = f(2 = P + 3 (21 — )22 — 1)
= — l@1 — 1) — (@2 - p)?
= — (21— z)2.

Therefore, X; + X, is a sufficient statistic.

(b) Is T'= X; + 2X, sufficient? In Example 6.2.6 it is shown that T is not sufficient. Let
us obtain the same answer by looking at the ratio of pdf's. Note that 7" ~ Normal (3, 5) .

The ratio fx(z;p)/ fr(T(z); p) is

1 —h(z-m? 1 —Yag—p)?
fEiwflaw) 7= =t
fr(z+2zq;0) — 1~ 1p(z1+2mp—3u)2
;;10'.'(
\(f /d'w@‘_\\exp 5 Ly — )2 — %(9«"2 — )+ 11_0(371 + 229 — 3p)?].
7/‘11/ (4

We can try the sam;;lgebraic manipulations as in part (a):
(1 + 270 — 3p)? = [(z1 — p) + 2(z2 — p))?

= (21— ) + 4z — p)* + 4(21 — p) (22 — 1)
and

1
— 5z — p)? —

(352 p©)? +10($1+2$2 3u)?

= — 5@ —p)? — (e — )2+ A (2 — p)(z2 — p)
= — 1[2(@1 — 1) = (m2 — W)’

g _%(21:1—@—;4)2,

which involves . So X; 4 2X5 is not sufficient. A
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In the preceding examples of sufficient statistics, we had to first guess the statistic 7" and then
verify that the conditional distribution of X |T" did not involve @. Next we present the
Factorization Theorem, which allows us to determine a sufficient statistic without having to}
guess. And even if we made the right guess, applying the Factorization Theorem is usually

much easier than figuring out the conditional distribution of X | T" or dealing with the ratio

Ix(z;8)/fr(T(z);0).

(Strictly speaking, it is very easy to determine a sufficient statistic because X itself is
sufficient. Of course what we are really looking for is a sufficient statistic that is more concise
than X )

Let X' denote the sample space of all possible data vectors.

Factorization Theorem. Let f(x ;) be the joint pmf or pdf of X . A statistic T'(X) is
sufficient if and only if the joint pmf or pdf can be written as f(z ; 8) = g(T'(x) ; 0) h(z) for
lzeA and 8 € O.

(This is item (6.2.9) in the textbook; see Theorem 6.2.1 for the case when T is real-valued.)
The factor g(7'(z) ;@) caninvolve z only through T'(z) but it can involve @ in any form.
The factor h(zx) caninvolve z in any form but it cannot involve @ at all. The factors are not

unique. For instance, one could multiply g by 2 and divide h by 2 to get a slightly different

factorization.

To apply this theorem, first write down the joint pmf or pdf f(z ;). Try to factor out
everything you can that does not involve €. This constitutes h(x). Now look at what is left
to see how z is involved. If = appears only in the form T'(x), then the theorem says that
T(X) is a sufficient statistic.

Example. X; ~ Binomial(n;,#), X, ~ Binomial(n,,8) (same @), independent of one

another. To find a sufficient statistic, we first write down the joint pmf:
e ! ny— ny =
f(a:;,:z:ﬁ? a (:m )91:1(1 S (:1:2 )9$2(1 —g)mre.

Looking for factors that involve only the z’s, we form h(z;,zs) = (;i ) (:2 ) . This leaves

671 (1 — Gy =T19%2(1 — g)ra—22
= 619 (1 — )y (] — g)na—c2
— 931""‘-'172(1 e 9)n1+n2*I1—I2

= gTit2(] — g)yutna—(Ti+z2)

which is a function of the z's only through z; + 5. Thus we have
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f(z1,22) = g(z1 + 225 6) h(z1, T2)
where g(t;0) = 6t(1 — g)mtm—t A
Proof of the Factorization Theorem in the discrete case.
1) Assume that T'(X) is a sufficient statistic. Then the conditional distribution of X [
does not involve 6. That is, the ratio f(x;8)/p(T(x);8) does not involve @, where
p(t;8) isthe pmfof T(X). Let h(z) denote the ratio and let ¢(T'(z);6) = p(T(x);0).
Check that f(z;8) = p(T'(z);8) h(z).
2) Conversely, assume that f(z;60) = g(T'(x);6) h(z). The pmfof T(X) is
p(t;8) = Po{T(X) =t}

Z Pg{XZ:D}

T(z)=t

=2, f(z;0)

z:T(z)=t

= 2. 9(T(x);6) h(z)

x:T(x)=t

= g(t:0)| > a=)].

z:T(z)=t

8 |l

The ratio f(z;8)/p(T(z);6) becomes

(J;E?”;f-)e) _ 9(T(=) ;6) h(=) _ =) .
U wrwe| | 2w sadine
= T(z")=T(z)

This does not involve @, and so T'(X) is a sufficient statistic. (]
The proof for the continuous case is more difficult and is omitted.

Example. Asin Example 6.2.3, consider a single observation X with pdf
1
Pl @) = 21_967|s-:| . This is a function of z only through |z|. We can conclude that

T = [X] is asufficient statistic by putting h(x) = 1 in the Factorization Theorem. This

example is a special case of the following lemma.

Lemma. If f(z;6) is a function of = only through T'(z), then T(X) is a sufficient
statistic.

To say that f(x ;) is a function of = only through T'(x) means that f(z;8) =
g(T'(x) ; 8) for some function g. So the lemma follows from the Factorization Theorem by
putting h(z) = 1.



Example. X,,..., X, iid. Normal (g, 1) .
(Note that we are assuming that the variance of the population is known to be 1.)
The pdf of a single Normal(y, 1) random variable is

3(z-n)?

: _ _1 -
f(.’l') ) [_L) - %’; €
Hence the joint pdf of the data vector X = (55 Koy s 05 K ) 05

Fl ) = (ﬁ)nem[—% (z: — )7 .

Since

(zi — p)? = 2+ 2zip 4 42,
we have

2w = p)? = Yk -2 m .
Hence

flz;u) = (712;)“%9[— %Zx?] exp[#Ewi = %nuz]
= 9> zi; 1) h(x)

where
1 " 1
9(t;p) = explut — fnp?] and h(z) = (ﬁ) GXP[“ 52333]-
Thus we see that 7" = 3" X is a sufficient statistic. A

{Lemma. A one-to-one function of a sufficient statistic is also sufficient.

This is intuitively clear because a one-to-one function of 7" must retain all the > information
that T" contains. Since X is a one-to-one function of > X;,wesee that X isalso a

sufficient statistic for an i.i.d. sample from a Normal(y, 1) population. .

Not every function of a sufficient statistic is sufficient. If the function is not one-to-one, then
it may lose some information. That is, if W is a function of T, and if T is sufficient, then
it is not necessarily true that W is sufficient. On the other hand, if W is a function of T' ;
and if W is sufficient, then it can be concluded that T is sufficient. This is because,
whatever information can be obtained from W , the same information can certainly be
obtained from T, because W can be obtained from 7.

Lemma. If W is a sufficient statistic, and if it is a function of T ,then T is sufficient.
Next we look at an example with 2 parameters.

Example 6.2.10. Let X,,..., X, bei.id. Normal(y, 0*) random variables with p and o2
both unknown. The parameter vector is § = (1, o). The joint pdf is
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As in the preceding example, ) (z; — p)? = 3" 2? — 243 z; + nu?, and so
Hae s yo#y= ( ;ﬁag)nexp[— TQLTME] CXP[({JIQ)ZHJE + (%)Zwe} -
= 9 T, 2 1, 0%) h(x)
where g(t1,ty;p,0%) = (@)nexp{ — %ﬁz} exp[(r‘g)tg + (%)tlJ and h(z)=1.
Now the Factorization Theorem implies that (3"X;, Y- X?) is a sufficient statistic. Since

(X,8?%) = (% T, ;%—I[Tg - % T7]) is a one-to-one function of (7} ,T}) = .. P
we see that (X ,.5?) is also sufficient. A

Caution. In the preceding example, it is not proper to say that X is a sufficient statistic for W
nor to say that S? is a sufficient statistic for 2. It is only proper to make the joint statement
that (X, S?) is a sufficient statistic for (1, 0?). The concept of a sufficient statistic for 8 is
well-defined only when @ is the entire parameter vector. In the preceding example, why
would it be wrong to say that X is sufficient for 1?7 To say that would imply that X is all
one needs in order to obtain optimal inference procedures for .. But it turns out that an
optimal test of Hy : 1 = po is based on the t-statistic 7' = (X — ,uo)/\/gZ/—n which

\requires 5% as well as X .
Next is an example in which the support of the distribution depends on the parameter.

Example 6.2.13. Let X, ..., X, be i.i.d. Uniform(0, §) random variables where 6 is an
unknown positive parameter. The pdf is

for0<z <8

flz;0) = { f

otherwise

or
f(z:6) = 51{0 <z <6}

The joint pdf of the sample is
Foissazast) = o] [1{0 < = <6}

Indicators functions can be helpful when dealing with a distribution whose support depends on

a parameter. In general, for any statement A,
g



T

1 if A istrue
F{A) = { .
0 if A is false

Note that J(A)I(B) = I(A and B) and I(A1)---1(An) = I(A; and -~ and 4,,).

In this example, we have ﬁI{O <z; <0} =I{0<zy <@ and---and 0 < z, <=
{0 < z¢y <z < 0} :t:Il{O <z H{zm < 6}. Now
f(@1, s 2030) = g2 {0 < 2y} {zn) < 0}
=9(2(n); 0) h(z)

where ¢(t;0) = ginf{t <0} and h(z) = I{0 < Ty} So X is a sufficient statistic. A

i Exponential families

We will see that exponential families behave nicely with regard to sufficient statistics. Let us
first review section 3.8 on exponential families.

Let X be a real-valued random variable with pmf or pdf f(z;6) where 6 = (6y,...,0,)

may be a vector. The family {f(z;6): 6 ¢ O} is an exponential family of pmf s or pdf s if
one can express

k
%f(a:;ﬁ) = a(B)h(z) eXP{ 2153(9) Rj(x)}-
=

To be a pmf or pdf requires a(6) > 0 and h(z) > 0. An exponential family is called regular
if —

(@ k=p,

(b) © contains a p-dimensional rectangle, and

(c) the functions b;(@) are differentiable.

Examples. The pmf’s or pdf’s of the following families of distributions are exponential
families:

Binomial(n,8), 0 < @ < 1 (n known)
Normal(p,0%), —co < < 00, 02> 0
Normal(y,03), —o00 <y < 00 (02 known)
Normal(ug, 0?), 02 > 0 (o known)
Geometric(d), 0 < 6 < 1

Negative binomial(u, k), x> 0 (k known)
Poisson(A), A > 0

Gamma(a, 8), >0, >0
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Beta(e, 8), a >0, 8> 0.

These are all regular exponential families. An exponential family that is not regular is
Normal (g, ), > 0.

Examples. The following families are not exponential families:

Uniform(0,6), 6 > 0

Uniform(6y,6;), — oo < 6; < 65 < o

{f(z;p0): —00o<pu<oo,0< 0 < oo} where
[@i0) = gexp[ = o (@ = 1)] Loo) ()

Cauchy(0,1), —c0 < 6 < o0

Laplace(d,1), — co < 6 < oo

Weibull(, 1), o > 0.

The first three examples above are not exponential families because their supports depend on
the parameter vector. In an exponential family, note that the support {z € X : f(z ;) > 0}
= {z € X : h(z) > 0} is the same for all 8. In the last three examples, the supports do not

depend on the parameters, but for other reasons (that are not easy to prove) they are not

exponential families.

.
Theorem 6.2.'3. Let Xi,..., X, bei.i.d. random variables with pmf or pdf in an exponential

family. The statistic T' = (3" R1(X:), ..., Y. Rx(X;)) is sufficient.
i=1 i=1

To prove this, write out the joint pmf or pdf of X = (X, ..., X,,), using the facts
4 :

n n ok
Texe[ 20,0 Ry(2)] = exp[3: PLIOLCH)
and

k

5 b, (0) Ry () — 3b(0)3 Rz

i=1j=1 j=1
Then apply the Factorization Theorem.

In this theorem note that the exponential family does not have to be regular.
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{Minimai sufficient statistics

A good summary statistic should be concise and informative. We have seen that if a statistic
is sufficient, then it contains as much information about the parameter vector @ as the whole
data vector does. So no information is lost by reducing the data to a sufficient statistic.
Besides being informative, we would like the statistic to be concise. That is, if we can take a
sample of 100 numbers and summarize all the information in just 2 numbers, this is better than

summarizing it in 3 numbers. The more concise, the better. The most concise sufficient

o —

statistic is a minimal one.

Definition 6.3.1. A statistic 7" is called a minimal sufficient statistic if (i) T is sufficient,
and (i1) it is a function of every other sufficient statistic.

Recall that a function is either one-to-one or (at least partly) many-to-one; a function is never
one-to-many. A function T(X) of the data vector X can be regarded, according to whether
the function is many-to-one or one-to-one, either as a reduction of the data or as equivalent to
the data vector. If one function T"(X) is a function of another function W(X), then,
according to whether the function is many-to-one or one-to-one, T either is a greater

' reduction than W or is equivalent to W. Thus, the definition above says that a minimal

sufficient statistic achieves the greatest reduction in the data while at the same time retaining

sufficiency.
Two facts about minimal sufficiency that we can state right away are:
(1) A one-to-one function of a minimal sufficient statistic is also minimal sufficient.

(2) If T(X) is a minimal sufficient statistic and U (X)) is a statistic such that T(X) is not
a function of U (X), then U(X) is not sufficient.

Lemma. T'(X) is a function of W (X) if and only if whenever W (z) = W (y) then
T(z) =T(y).

Proof. (= ): Suppose T'(X) is a function of W (X). This means that there is some
function H(w) such that T(z) = H(W (z)) forall z. If so, then whenever

W(z) = W(y), we must have T'(z) = H(W(x))=H(W(y)) =T(y).

(<= ): Conversely, suppose that, whenever W (z) = W (y), then T(x) = T(y). Definca
function H (w) as follows. For any w, choose z so that W(z) = w. (Ifnosuch =
exists, then H (w) can be assigned any value — it doesn't matter.) Then define

H(w) = T'(z). Is this definition well-defined? What if we choose a different point ¢ so
that W (y) = w? Then W(z) = w = W(y),so T(z) = T(y) and we get the same value
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by setting H(w) = T'(y). This shows that the definition of H is well-defined. Note that
T(x) = H(W(z)).O

(" Theorem. Let f(x ;) be the joint pmf or pdf of a data vector X . Suppose T(X) isa
statistic such that T'(z) = T'(y) implies that f(z ;8) = c(z,y)f(y;8) forall 6, where
c(z,y) does not involve @. Then T'(X) is a sufficient statistic.

Proof. Choose a vector 6, ; it can be any vector, but once it is chosen, it is known. Now
T(xz) = T(y) implies

f(z0) _ clzy)fy0) Jyh)

f(zi60) — clzy)fly60) ~ fly o)
By the lemma above, this means that f(z ; 6)/f(z ; 6o) is a function of T(z). This
statement can be made for each value of 8. In symbols, this means that
f(z;8)/f(z;60) = g(T(x):0) . Letting h(zx) = f(z;60), we can write
f(z;8) = g(T'(x); 0)h(x) . From the Factorization Theorem we can now conclude that
T(X) is sufficient. O

Theorem 6.3.1. Let f(x;6) be the joint pmf or pdf of a data vector X . Suppose T'(X) is
a statistic such that T'(z) = T'(y) ifand only if f(z;6) = c(x,y)f(y;6) forall 8, where
¢(z,y) does notinvolve @. Then T'(X) is a minimal sufficient statistic.

Let us digress from the textbook for a moment to see how this theorem can be used to show
the equivalence of two principles of statistical inference. Suppose that an experiment is
performed in which a data vector X is generated according to a probability distribution with
joint pmfor pdf f(x;6) where 6 is an unknown parameter vector.

Sufficiency Principle: Suppose T'(X) is a sufficient statistic for 6. Statistical inference
about & should depend only on T'(X).

Note that a principle is not the same thing as a theorem. The Sufficiency Principle is neither
true nor false. It is proposed merely as a sensible approach to statistical inference. A
statistician can choose to either follow or not follow the Sufficiency Principle, but most

statisticians follow it most of the time, except when they do model-checking.

According to this principle, if we are trying, for example, to find a good estimator of a
coordinate ¢, of the parameter vector, we can restrict our attention to functions W(T(X)) of
the sufficient statistic. The Sufficiency Principle says that a sufficient statistic is “sufficient”
(in the nonstatistical everyday sense of the word) for doing inference about the parameters.
Another way to express this principle is as follows.
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f”“
Sufficlency Principle (restated): Suppose T'(X) is a sufficient statistic for 6. Suppose z

| and g are two possible data vectors in the sample space such that T(z) =T(y). Inany
statistical inferential procedure, the conclusion about 8 from observing X = z should be the

same as the conclusion from observing X = y .
Next consider the concept of likelihood.

Definition. Let X be a random data vector with joint pmf or pdf f(x;8). Givenan
observed data vector X = x, the likelihood functionis L(6 ;z) = f(= ; @), regarded as a
function of 6.

The pmf or pdfis a function of « for each fixed 6, whereas the likelihood function is a
function of @ for each fixed = .

Let 6 and 6 be two possible parameter vectors. If we observe X = z and if

L(6;z) > L(8';x), then @ is more “likely” to be the true parameter vector than @’ is. The
ratio L(6;z)/L(6'; ) can be called the relative likelihood of 6 versus . We see that @ is )
more likely than 8" if and only if the relative likelihood is greater than 1. )/

Likelihood Principle: Statistical inference about 6 should depend only on the relative
likelihoods of the possible parameter vectors.

Suppose = and y are two data points such that the corresponding likelihood functions give
the same relative likelihoods for all pairs of parameter vectors. That s, L(6;z)/L(0;x) =
L(6;y)/L(6";y) forall @ and @' in the parameter space. This is equivalent to the condition
that L(6;z)/L(6;y) = L(0';2)/L(8";y) forall @ and @, that is, L(6;x)/L(6;y) does
not involve €. Thus we have the restatement:

Likelihood Principle (restated): Suppose z and y are two possible data vectors in the
sample space such that f(z;8) = c(z,y)f(y;6) forall 8, where ¢ may depend on z and
y butnoton . In any statistical inferential procedure, the conclusion about € from

observing X = x should be the same as the conclusion from observing X = y.

Recall Theorem 6.3.1. Let (*) denote the property that T'(z) = T'(y) if and only if
f(z;68) =c(x,y)f(y;0) forall 6. Theorem 6.3.1 states that if a statistic T(X) satisfies
_property (*), then it is minimal sufficient. It can be shown that the converse is also true.
Thereforc the Likelihood Principle is equivalent to saying that statistical inference about

should be based on a minimal sufficient statistic, which is therefore equivalent to the
zSufﬁmency Principle.



=15 -

Now we return to the textbook. Let us see how Theorem 6.3.1 can be used to find minimal
sufficient statistics. Suppose we are given a family of pmf’s or pdf’s {f(x;0):6 € O} and
we want to find a minimal sufficient statistic. The steps are: (a) form the ratio
f(z;8)/f(y:6), () try to simplify the ratio using algebraic manipulations, and (c) identify
functions of z, say Ti(x),...,T.(z), such that the ratio is constant for all  if and only if
Ti(z) = Ti(y),..., and Ty(x) = T.(y). Then T(X) = (Th(X),...,T,(X)) is a minimal
sufficient statistic.

Example. Let Xi,..., X, beiid. Geometric(f), 0 < 8 < 1. The joint pmf is
flz;0) = [18(1 - 8)%~ 1 = g1 — gYrE—n,
i=1
Consider the ratio

fl@f) _ 6n1-FEH T o o
f@:8) = on(1—g)Twi —th% Zvi

The ratio is constant for all ¢ if and only if S>z; — Y y; = 0, i.e., 2oz =Y, By
Theorem 6.3.1, T'= 5" X; is a minimal sufficient statistic. /A

Example. Let X;,.... X, beii.d. Normal(y, 02) random variables with i and o both
unknown. The joint pdf of the data vector X is

n
£ 2 s 1 [_ L o ‘ZJ
Mz p,0%) ;gm eXp 252 (zi — )

- (Vzl—ﬁr?)ne)(p[ - ﬁ‘gé(-’ﬂi - P’«)ZJ

Consider the ratio

flzpo?) (m)nem[_ﬁigi(xi_ﬁ]
fyspmo?) — (ﬁ,ﬁ)nexP[“ﬁzé(yi_”)ZJ

= exp[%ﬁ{Z(me —w)? = (i - u)z}]

-1
= exp[ggf(zxf—zyf) + fr(ZIﬁZyi)}-
If 327~ 3 y?=0and Yz, — 3 y; = 0, then the ratio is 1 no matter what i and o?

are. And if one of these two differences is nonzero, then the ratio would not be constant.
Therefore, by Theorem 6.3.1, T = ( Y Xi, > X?) is a minimal sufficient statistic. /A



516

Example. Let X7, ..., X, bei.id. Uniform(0, ), 8 > 0. The joint pmf is

3

fz;0) = __Hléf{()qf <O} = RI{0 <z} I{zm < 6}

For this family of distributions, all observations are positive (or speaking more technically,
they are positive with probability 1). Therefore, it is always true that z(1) > 0 and so we

may write the joint pdf as

1
Nz i) = gnl{zm < 0}.
Form the ratio

f@) _ gl{ew<0}  I{zw<o)
fy:0) — B%I{y(n)<€} - Hymy<0}-

First we address the potential problem that in this example the ratio might involve division by
0. Note that the ratio 0/0, which is not well-defined, can be ignored. This is because, in the
statement of Theorem 6.3.1 above, the condition on the pdf’sis f(z;0) = c(z, y)f(y;90).
Note that if f(z;6) = f(y;8) = 0, then the condition is met.

If () = y(n), then we see that the ratio is either 1 or 0/0 for all €, and so the ratio is
constant for all values of @ that cannot be ignored. Conversely, suppose the ratio is constant
for all values of @ that cannot be ignored. The constant must be 1 because when @ is greater
than both z(,) and Y(n)» theratiois 1/1 = 1. We will show that T (n) = Y(n) Dy supposing
T(n) # Y(n) and arriving at a contradiction. Suppose Z(n) < Y(n)- Choose a value of 6
between them, z(,) < 0 < Y(n)- Then the ratio of pdf’sis 1/0 = co # 1. Similarly, if we
SUPPOSe Y(n) < T(n), We obtain aratio 0/1 = 0 # 1. Thus we have shown that the ratio is
constant if and only if 2(,) = y(,). This implies that T = X (n) 15 @ minimal sufficient
statistic. /A

Example. Let X;,..., X, bei.i.d. Uniform(4, 268), 6 > 0. The joint pfhfis )
f@30) = [T51{0 < 7 < 20) = {6 < 21y < Ty < 20}
i=1
Form the ratio

f(z;g) _ 9%1{9<$(1)<$(n)<29} _ f{9<.’1:(1)<:l:(n) (29}
f(y;@) 5%[{8<y(1)<y(,1}<26} I{9<yf1) <y("~) <29} '

If () = Ya) and x(,y = Y(n), then we see that the ratio is either 1 or 0/0 forall 8, and so
the ratio is constant for all values of @ that cannot be ignored. Conversely, suppose the ratio
is constant for all values of § that cannot be ignored. First we note that it is all right to ignore

data vectors whose joint pdfis 0 for all §. That is, we may as well eliminate from the sample
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space any set of data vectors whose probability is 0 for all distributions in the model. In the
last expression for the ratio, the numerator and denominator are indicator functions and so
their values are either 0 or 1 forall §. So the possible ratios are 0 /0 (which can be
ignored), 0/1 =0, 1/0 = co, and 1/1 = 1. We have just noted that we can suppose each
indicator function takes the value 1 for at least one @, and so the only possible way these
ratios can be constant (for all values # that cannot be ignored) is for the ratio to always be
1/1 =1 (other than in the ignorable case when 0/0). That is, a constant ratio implies that

0 < (1) < () < 26 ifand only if 8 < Y1) < Y(n) < 20. By an argument similar to the one
in the preceding example, this implies Z(1) = Yy and Ty = Y(n). B A

In these examples we have seen that, when applying Theorem 6.3.1 to a family of pdf’s whose
supports depend on the parameter vector €, we can ignore the ratio f(z ;8)/f (y;8) for
values of @ for which both pdf’s are 0 (because then both = and y are impossible). In
order for the ratio be constant for all @, it is necessary (but not sufficient) that

{6: f(x;0) >0} ={6: f(y;6) > 0}.

Proof of Theorem 6.3.1. Suppose that T'(X) is a statistic having the property that
T(x) = T(y) ifand only if f(x;0) = c(z,y)f(y;6) forall 6. By the preceding theorem,
this implies T is sufficient. It remains to prove it is minimal. Let W (X)) be another
sufficient statistic. We must show that T" is a function of W. By the lemma on p. 12, we
must show that W(z) = W(y) = T(z) = T(y). By assumption, this is equivalent to
showing that W(z) = W(y) = f(z;6)/f(y;6) is donstart for all §. The sufficiency of
W implies, by the Factorization Theorem, that f(z;8) = g(W (z); 6)h(z). Hence, if
W(z) = W (y), then

f(z:0) _ o(W(z)i0)h(z) oW (x);0)hx)  hix)

fw:0) = oW(w)i0hly) ~— ¢W()0)hly) = hiy)

which does not involve @ . 0O

Suppose X' is a data vector with joint pmf or pdf f(z;8). We let n denote the number of
observations in X = (Xy,..., X,). Let p denote the number of parameters in

6 = (61,...,0,). Wesay p is the dimension of the parameter vector. Suppose T'(X) isa
sufficient statistic. Let r be its dimension; that is, 7" = 5

If the model is suitably chosen, then one should “almost always” be able to estimate all p

parameters from the data. To estimate p parameters requires at least p pieces of information,

“ and so it is “almost always” true that n > p. By the definition of sufficiency, if the data allow

us to estimate all p parameters, then so does any sufficient statistic. This implies that

“typically” r > p. But atypical counterexamples can be described; see Remark 6.3.1.
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Even when T is minimal sufficient, it may be that » > p. The case when r = pisa

particularly nice one, as we will see later.

If the data are i.i.d. with pmf or pdfin an exponential family, then there is a sufficient statistic
of dimension %, no matter how large n is. For some models, however, the dimension of a
minimal sufficient statistic is n .

Example. Let Xy,..., X, beiid. froma Cauchy distribution with median 6
— 00 < § < 0o0. The joint pdf is

f(@:60) = [T ey = — ] .
* = T +H(z:—6)] 7 ] [14+(z; —6)2]

=1

To apply Theorem 6.3.1, consider the ratio
n 1
g TP [rm-oy

TWO ™ ol 1+ (w0
i=1

B i+ —0p)

1

As 6 — o0, the ratio approaches 1. So it is constant for all 0 if and only if

11+ (=02 = [T+ (- 0
forall 6. Each side of this equation can be multiplied out to form a polynomial in 6. Itis a
consequpence of the F unc{l%arrnﬁi{}(talh"l‘:lforejn of Algebra that two polynomials in 8 are equal
for all 8 (or even just for.all i seme-interval) if and only if the coefficients of the two
polynomials are equal for all powers of §. In the case n = 2 , this leads to the conclusion that
Ty + T3 = y1 +y2 and z129 = y1y,. This holds if and only if z(;) = Yay and z(9) =y (9.
For general 7, it can be shown (but it's not easy) that the ratio is constant if and only if
Z(1) = Yy, - -, and T, = Y(n)- Therefore, the vector of order statistics

T = (Xqy,...,X(n) is a minimal sufficient statistic. /A

Theorem 6.3.3. Let X1, ..., X, bei.i.d. random variables with pmf or pdf in a regular
exponential family. The statistic T = (3. Ry(X;), ..., >_Ri(X;)) isminimal sufficient.
i=1 i=1

Example. Let Xy, ..., X, beiid. Normal(y, 02) random variables with 1 and o? both
unknown. The joint pdf is

1

flz;p,0?) = (7;?7)”6@[— 307 <

T
1=

(z; — M)Z]

1
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= (7arst)"ow] - a3 (5 - 2 )
= { (7)o - shams) o[ (- ) (39) + () (5201

= {a(,u, 0?) }exp [bl(#,az)Rl(m) + ba(p, oz)Rz(z)} -

So this has the exponential family form (put h(z) = 1) with R(z) = Yozt and Ry(z) =
>_z;. (If you prefer, you could choose to change the subscripts in order to match the
subscripts of the R’s with the powers of the z’s: Ry(z) = 3 z; and Hay(2) = § k)

The family is regular as defined on p- 10 above because (a) k = p = 2,(b) @ =

{(1,0Y): —co< < 0 , 0% > 0}, which is the upper half of the real plane, which certainly
contains a 2-dimensional rectangle, and (c) the functions — 1 /20% and p/o? are
differentiable. Therefore, (3°Xi,Y°X?) is a minimal sufficient statistic. A\

Example. Let Xj,..., X, bei.id. Normal(@, §) random variables with ¢ positive and
unknown. The joint pdf is

f(z;0) = (T;:é)nexp[ﬁ %g(xl —9)2}
= ( \/;To)nexp[ - % (sz — 205 "z, + nt)}
- (ﬁé)nexp[— Q%er + J oy~ %QJ

~{( ) (- 1) Jon(ze)ss| (- ) (2]

= a(0) h(=) exp[b(6) R(=)]

where R(z) = > z2. The family is regular because (a) k = p=1,(b) © = (0,00), which
contains a 1-dimensional rectangle (a 1-dimensional rectangle is simply an interval), and (c)

the function — 1/26 is differentiable. Therefore, 3~ X? is a minimal sufficient statistic. A

Example. Let X|,..., X, beiid. Normal(6, 6?) random variables with ¢ positive and
unknown. The joint pdf is

f(=;0) = (m)”ekp[* ﬁZl(m - H)ZJ

1

_ (m)ﬂexp[ oy (Zg;g — 205z, + n(ﬂ)]



-20 -

~{ (7o) "m0~ 3) Jeso[ (- ) (222) + (3) (5]
= a(0) exp[b1(0) Ry () + ba2(6) Ra(=)] .

This has the exponential family form, but & = 2 and P =1, so01itis not regular. So Theorem

6.3.3 cannot be used. But we can apply Theorem 6.3.1 to show that the minimal sufficient
statisticis (3°X;,3"X?). A

Next we will generalize Theorem 6.3.3. First we extend the definition of an exponential
family.

Let X be a data vector with joint pmf or pdf f(x;6) where 8 = (6, ..., f,) may be a

vector. The family {f(z;6):6 ¢ ©} is an exponential family of pmf’s or pdf’s if one can
express

k
f(=;6) = a(6)h(z) exp{ _Zlbj(ﬁ’)Rj(ﬂ:)}-
i

To be a pmf or pdf requires a(6) > 0 and h(z) > 0. An exponential family is called regular
if

(@) k=p,

(b) © contains a p-dimensional rectangle, and

(c) the functions b;(6) are differentiable.

Check that if X;, ..., X, bei.i.d. froma distribution with pmf or pdf in an exponential family
as on p. 10 above, then the joint pmf or pdfof X = (X, ..., X,,) has the exponential family
form with a(6) being the n-th power of the a(@) onp. 10, h(z) =[] h(z;), b;(6) being
the same as on p. 10, and Rj(z) = 3" | Ri(z;). Note that if the exponential family for the
individual X;’s is regular, then so is the exponential family for the vector X .

Generalizing Theorem 6.3.3 (see p. 18), we have:

Theorem. Let X be arandom vector with joint pmf or pdfin a regular exponential family.
The statistic T' = (R (X)), ..., Ry (X)) is minimal sufficient.

Information

When discussing the concept of sufficiency, we said that a sufficient statistic contains all of
the information about @ that the whole data vector does. This is just an informal description
of what the concept of sufficiency is intended to embody, and so the word “information” is

being used informally in its everyday sense. But now we will give a formal quantitative
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definition of information’%%ivcn a data vector X with joint pmf or pdf f (x;0), 8 c 6, we
will come up with a %{m that measures, in some sense, the information that X contains

about 6. First we suppose 6 is a real-valued parameter.

The definition will be restricted to situations in which the family of joint pmf’s or pdf’s
satisfy the following three regularity conditions:

(RC1) f(z;8) has the same support for all 4.
(RC2) f(x;0) is differentiable with respect to .

(RC3) For all statistics W (X)) whose expectation Eg(W) exists, the expectation is a
differentiable function of @ and the derivative can be calculated by differentiating

under the summation or integral sign.

Conditions RC1, RC2, and RC3 are satisfied in a one-parameter exponential family, provided
that the functions b;(0) are differentiable, which they typically are.

49‘

;':;Deﬁnition. (a) The score (or score function) is ;%Iog f(X;0).
/
2@) The information (or Fisher information) is Vary [3‘%108 L 9)] :

Note that the score is a random variable, because it is a function of the random data vector X,
but it is not a statistic, because it is also a function of the unknown parameter . The Fisher
information is regarded as a measure of the information about @ that is contained in the data

vector X' ; it is denoted by Zx(6) j

Example. Let X}, ... X, bei.id. Normal(s:, ¢2) random variables with  unknown and o3
known. The joint pdf is

flzyp) = (m)nexP[_ %gg;(xf _#)2] -
So

T

1
log f(z; 1) = — nlogy/2n0? — ?TSZ(E" ~ w2,
=1

and the score is
n
4. L e e ) LR
Bal08 f(Xsp) = Ugg(xl = (X -w.
The information about j contained in X is

0.2
(W) = Varl g (X = ) = (%)?Var(X) = (2% -

S
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This is a sensible measure of information for two reasons. First, the information is
proportional to the size of the sample. If the sample size is doubled, then the information is
doubled. This makes sense. Second, if the variance of the distribution is larger, then, for a
given sample size, the information in the sample is smaller. This also makes sense because
variability interferes with our ability to determine the value of JTAN

Theorem 6.4.1. Let X, ..., X,, bei.id. with pmfor pdf f(z;6) satisfying RCI, RC2, and
RC3. Then Ix(0) = nZx,(6).

That is, the information contained in an i.i.d. sample of size n is n times the amount of

information contained in a single observation.

Proof. For an i.i.d. sample,
AX50) = [T f(Xi50)
= log f(X; 8) = 37 log f(Xi;0)
= Slogf(X;0) = 0, Llog £(X::0)
= Var[Zlog F(X; 6)] = Var[y, D log £(X::0)]

= Sr Var[Zlog £(X::60)] (the Xy are independent)

= nVar[ Zlog f(X1;6)] (the X/’s are identically distributed)
= Ix(0) = nZx,(6).0
ext we will find two alternative ways to calculate Fisher information.
Lemma. Assume conditions RC1, RC2, and RC3.
(@) If Eg(W) exists forall 0, then Ej [W(X) D 10g f(X;e)] e d—‘L—Eg[W(X)] .
(b) Eg[g%logf(X;B)] — 0.
© Ee([a%'Ing(X;B)] 2) = Vany | slog £(X;6)]

a
s L Xl .
Proof. Recall that %log f(X:0)= %2. For (a), in the

continuous case,

. a
Be [W(X) "’—if%,f—)] = f {W(x) ﬁﬁ—ﬁ)—}f(x 0) dz

= [W(2) Z f(2:0) do
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d d
= @fW(:t:)f(a:;G) dz = B (W(X))].
Part (b) follows from (a) by taking W = 1. Part (c) follows from (b). O
Part (c) gives another way to calculate information.

Example (continued). In the example above concerning an i.i.d. sample from a
Normal(y , 03) population, we could have calculated T x(p) = E[{%(Y =] =
0

(% )2E[(f — 1£)?], but it seems easier in this example to work in terms of the variance. A
0

Lemma. Assume conditions RC1, RC2, and RC3. Then

Ea([%logf(X;f?)]Q) = ~Bs| glog /(X ;6)] .

See Remark 6.4.1. The proof is based on the preceding lemma and involves differentiation
under a summation or integral sign.

Example (continued). In the example concerning an i.i.d. sample from a Normal(y, o?)

population, we could have calculated Zx () = — E[a%z;log f(X;p)]. From above we know
g ) = e L) _
a—p‘-logf(X, i = o (X — p), and so azﬂlogf(X,,u) = =g Now Zx(p) =

ny_ n
“Elegl=gra

Example. Let X;,... , X, beiid. Bernoulli(¢) , 0 < @ < 1. This family of distributions is
a one-parameter exponential family and so conditions RC1, RC2, and RC3 hold. The pmfofa
single observation is f(z;6) = 6%(1 — 0)1—%, 50

log f(z;0) = xlogd+ (1 — z)log(1 — ),

11—z z—8

9 9y — Z _ —
ggloef(z:0) = 4 —1=§ = gy and

32 1—
gz log f(z;0) = — '9% - (_lhﬁ
The information in X; can be obtained as
_ Xy—0 1 _ Va(Xy)  6(1-6)
Ix(0) = Vm[@(l—&)] T 62(1-0)2 T e2(1-6¢ T 8(1—-0)"
By Theorem 6.4.1, the information in the whole sample is Ix(0) = nZx,(0) = 72

6(1-6) -
Alternatively, we can calculate

500 = o1 - ] = 513+ dp]



E[X:]  1-E[Xi] 0 1-6 1 1
=@ + (1_9)5 = taoer = 7 (-0 = 9a-0)- >

Another way in which Fisher information behaves like a measure of information should

behave is given in the following theorem.

Theorem 6.4.2. Let X be a data vector with pmf or pdf f(x;0) satisfying RC1, RC2, and
RC3. Let T' = T'(X) be a statistic.

(@) Zr(0) < Ix(6) forall 6.

(b) Z7(0) = Ix(0) forall 8 ifand only if T is sufficient.

Part (a) says that a function of X cannot contain more information than X does. A measure
of information would not be sensible unless it satisfied this property. Part (b) coincides with
the motivating idea behind the definition of a sufficient statistic. The formal definition of
sufficiency is in terms of conditional distributions, but the motivation for it was the idea that a
statistic is sufficient if it contains all of the information about 8 that X does.

To calculate the information in T, first find the pmf or pdf of T, say, h(t;6) and then
calculate Tr(6) = Varg[ 2slog h(T'; 6)] .
Example. Let X;,..., X, be iid. Normal(6,8), 6 > 0.

(a) For an i.i.d. sample we can find the information in a single observation and then multiply
by n (Theorem 6.4.1).

F(z:0) = ﬁ exp[— %($~8)2} .

Before differentiating with respect to 4, it can be helpful to try to simplify the expression

relative to @ in order to make differentiation as easy as possible. We can manipulate to get
1

~ 55— 0)= — 35(c® 20z + 0?)
= - ggatto-§.
Now
log f(236) = — glog2m — logh — ga® + -
aglog f(z;0) = _2l+%m%
ezlogf(:c 0) = Lgi%;
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(b) Next let us calculate the amount of information about @ that the sample mean X
contains. We know that X ~ Normal(8, %) . Let h(z;60) denote the pdf of X .

= T TR

logh(z;0) = —%log%ﬁ_l ogf — BT +n$ﬁ%9
B%logh(f;é') = *%‘*‘gﬁ_j*%
2 log h(z;6) = L

For n > 1, we see that T%(6) = 92 + 9 < 92 + 9 = Ix(6). Therefore, by Theorem
6.4.2(b), X is not sufficient. However, looking at the ratio Z(4)/Z. xlf) =

(282 + 6)/(292 + 9) (9+ )/(9+ 2), we could say that X is “almost
sufficient” if we knew that  was substantially bigger than % :

(c) By using the Factorization Theorem, we can see that T = >0 X? is a sufficient statistic
(see p. 19 above). Another way to show the sufficiency of 7" would be to use Theorem
6.4.2(b). That is, we could calculate the information in T and show it is equal to the
information in X . However, this is much more difficult than using the Factorization

Theorem. The distribution of 7" is,noncentral chi- -squared,and its pdf is expressed as ajmﬁmte
series. A\ oo W'“’W’ of 4 Voo vz 0,

Example. Let X, ..., X, bei.id. Normal(#, 8% T4,

(a) Steps in the calculation of the information in the whole sample are:

f(a:;ﬁ') = m exp[— 5}55(9;%9)2} i

1 2 1
log f(z;0) = — 5log2m —log 6 — Z—IB—g 3 % -3
o? 1 3
5oz log f(z:6) = '_2‘79&31—+ =
IXI(B) s _2

Therefore, Tx(68) = 92 ’

(b) Next let us ﬁnd the amount of information in the sample mean X . We know that

X ~ Normal(#, —-) Let h(Z;6) denote the pdf of X .
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h(z;6) = 7;—9_26@[_%(3—;_9)1

logh(z;0) = — %log2— log§ — 5772 + 7T — 5
splogh(z;0) = - L4 22 _nz

plogh(;6) = & - B2,

Ix(0) = 252,

Forn > 1, Tx() = ngf gg =Zx(0). So X is not sufficient. Lookmg at the ratio

T%(6)/Ix(0) = (n+2)/3n, we see that for large n, X has only about the information
that the whole sample does. /A

Information about a parameter vector

Consider a data vector X with joint pmforpdf f(z;0), 8 € ©. When 0 is real- valued, we
have defined a measure of the information that X contains about 0 . For a vector-valued

parameter 6 = (0y,...,6,), the information will be defined to be, not a single number, but
rather a matrix of numbers

We require the same three regularity conditions, with @ replaced by 6. In RC3, the
derivatives are the partial derivative with respecttothe 6;, j=1,... p.

Conditions RC1, RC2, and RC3 are satisfied in an exponential family, provided that the
functions b;(6) are differentiable, which they typically are.

Definition. (a) The score vector is %log f(X;9).

(b) The information matrix is Varg[(.;a—glog f(X;0)].

Notation. If g(6) = (6, ..., 0,) is a real-valued function of several variables, then
5690 = 350 = (32©)..... ZL©).

fU(X) = (Ui(X),...,U(X)) is a vector-valued statistic, then

alUy(X)] - Cov[Uy(X), Uu(X)
Var[U (X)] = ( : :
Cov[U(X),Ui(X)] --- Var[U, (X))

This is called the variance-covariance matrix of the random vector U . Its (i, j) entry is
Cov[Ui(X) ,Uj(X)).
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%';Ihe (2, j) entry of the information matrix is Covo[a—ag—_log FLX; B)., %log f(X; 9)].
Similar to the real-valued parameter case, this can be calculated in two alf!emative ways, as
a g o
Eg|( 551 X;0)) (=1 X0 —E¢| 557551 X; 0)]|.
o[ (57 log (X 6)) ( 9;108 /(X 0))] oras —Eq| 90,99; 108 (X ; )]

Theorems 6.4.1 and 6.4.2 are still true with 8 in place of §. (The inequality of matrices in

the generalization of Theorem 6.4.2(a) is defined using the concept of a positive semi-definite
matrix.)

Example. Let X;,..., X, bei.id. Normal(sz, 02) random variables with unknown
parameters p and o2. We will be differentiating with respect to o2, and so it is convenient

to get rid of the superscript by using the notation v = o2. The pdf for a single observation is

flz;p,v) = 721‘”_1/) exp[— 5%(3—#)2] .

Now
log f(z; . 9) = ~ §log2r — Llogy — ﬁ(m—p)z
B%mgf(m;#,w) = - 51@2(3;_@(_1) _ %
%logf(‘”%#ﬂ) = gy + 5 (2 — p)?
sloe f@imw) = - 4

2
%ﬁlogf(x;ﬂ,tb) = ﬁ - Els:(«’v—#)z

%bgf(w;#,w) = £ %L*

—E:"g%logf(r;p,tb)] = i ~ 315

Sl 5] = - g+ by = g = o
~E[ g5 l0e 1w w)] = 0.

Thus we obtain
m

— 0
Ix(p,0%) = | © % VAN
0 351
In the next chapter, we will see that information and information matrics are useful for
establishing lower bounds on the variances of unbiased estimators. Next term you will see

that they are useful for approximating the variances of maximum likelihood estimators.
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Ancillary statistics

An ancillary statistic is, in some sense, the “opposite” of a sufficient statistic. Whereas a
sufficient statistic contains all the information about @ that the data vector does, an ancillary
statistic, by itself, contains no direct information about 8 . Nevertheless, we will see that

some ancillary statistics can be useful, when used together with other statistics, for making
inferences about 6.

Definition 6.5.1. A statistic T'(X) is called ancillary if the distribution of T(X) does not
involve 6.

Therefore, an ancillary statistic by itself cannot provide any information that would help in
distinguishing between different values of @ . M_g[gignn_gw is ancillary, then the
wipfonnation it contains about @ is 0. This follows from the fact that its pmf or pdf, say g(t)
does not involve @, and so %log 9(T)=0.

2

Example. Let X, ..., X,, bei.i.d. Normal(y, 1) random variables.
(a) X; — X5 ~ Normal(0,2). Since this distribution does not depend on p,then X| — X,
is an ancillary statistic.
(b) >°(Xi— X)%* ~ x2_, (see Theorem 4.4.2(i1); note that we have ¢? = 1) and so it is
ancillary.
(¢) X(n) — X(1) is ancillary. It would be difficult to find the pdfof X () — X(y), but
fortunately we can show that the distribution does not involve t+ without finding the pdf. We
can write X; = Z; + p where 7y, ..., Z, arei.i.d. Normal(0, 1) (by letting Z; = X; — p).
Since adding y to the Z;’s does not affect their order, we have X(;) = Zy+ i and
Xn) = Z(n)+p. Hence X(ny— X gy = (Zmy+ 1) —(Zay+p) = Z (n)— Z (1) Since the
joint distribution of the Z;’s does not depend on p, then neither does the distribution of any
function of them, such as Zn) — Zqy- (Inthe preceding sentence, of course the function itself
should not involve 1.) Note that the statistics in (a) and (b) also could be shown to be
ancillary by expressing them in terms of the Z,’s .

g’(d) Although Z; = X; — p1 ~ Normal(0, 1) has a distribution that does not involve L, note

hat we should not call it an ancillary statistic, because it is not a statistic (see p. 2 above). A

Example. Let X, ..., X, bei.id. Uniform(¢ — 1,6 + 1) random variables.

(a) Therange R = X,,) — X (1) is ancillary. This can be shown by deriving its pdf (see
Exercise 4.2.8) and noting that it does not involve §. An easier way to show R is ancillary is
to use an argument similar to the one in (c) in the preceding example, that is, by writing

Xi=2Z;+ 0 where Z,,..., 7, arei.id. Uniform( — %, + %)
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(b) The statistic (M, R), where M = (X(y + X(n))/2 is the midrange, is minimal sufficient
because it is a one-to-one function of (X(y, Xmy) . At first sight, it seems strange that part of
a minimal sufficient statistic, namely R, could be ancillary. The midrange M clearly
provides information about § and in fact could be used to estimate § . But what so_rfig N
EIE)#‘_/UOH -does-F-previde? It i 1s useful in determmmg how accurate M is as an estlmator
of 6 . Without using R, we know that |M 9] < 1 (because 6 — 3<M<o4+1 1). By

—

using the value of R, we can say more: |M — 0| < %(1 — R). For example, if B=0.8,
then we know |M — 6| < 0.1. A

The examples above can be viewed as special cases of a general result about location families.

Definition. Let g(z) be a known pdf on the real line and define f(z;0) =g(x —6). The

family of pdf’s {f(z;6) : — oo < 0 < oo} is called a location Jamily, and 6 is called a
location parameter.

Examples. (1) The family of Normal(, 1) pdf’s is a location family with location parameter
t - To see this, write down the pdf f(z;p) = (1/\/2_7r)exp[ — (= — p)?) and note that it
can be expressed as f(z; 1) = g(z — ) where g(z) = (1/\/2_7r)exp[ — 32%]. Note that
g(z) is a pdf, namely, the pdf of the Normal(0, 1) distribution.

(2) The family of Uniform(8 — %,6 + 3) pdf’s is a location family with location parameter
6. The pdf can be expressed as f(a: O)=I{-;<z<0+1}=

I{-1< 3:—6’< 3} = g(z — 6) where 9(z) = I{ — 5 <z < 1}, which is the

Uniform( - 3, 1) pdf.

(3) The location parameter does not have to designate the “center” of the distribution, as it

does in example (1) and (2). For example, the family of Uniform(6, 6 + 1) pdf’s is a location
family with location parameter 6 .

Lemma. Let X;,..., X, be i.i.d. random variables with pdf f(z;60) =g(x —0) ina

location family. The statistic T" = (X, — X youesy Xn—1— X,) is ancill and 5015
jfl’hf'ﬁt’ Myif «-ﬁm.r)(“t o 01" ( ' " ! ) ary) “wj

Proof. (i) To see that the diﬁ'erences are (jointly) ancillary, we consider Z; = X; — . Then
Xi=2Z;+0 and Z; has pdf g(2) not involving 6. Let us check that if X has pdf

g(z —6),then Z = X — 6 has pdf g(z). In general, if Z = k(X) for some one-to-one
differentiable function k(z), then Theorem 4.4.1 tells us that fz(z2)=f X(:L‘)Iggl where z

i1s expressed in terms of 2z by the inverse transformation z — k~!(z). In our case we have

i=a—0,r=z40, :—j— =1, fx(z) = g(x — 0). Hence fz(2) = g(z — 0)|1] = g(2).
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(1) Zi,..., Z, are iid. with pdf g(2) , so their joint distribution does not involve 6.
Therefore, any function of them, as long as the function does not involve 6, is a random
variable (or random vector if the function is vector-valued) whose distribution does not
involve 6. So the lemma will be established if we show that T" can be expressed as a
function of the Z;’s. Each entry in 7" can be expressed as T} = X; — X,, =
(Zi+0)—(Z,+0)=2,-2,.00

Lemma. If T is an anciilary statistic and W = W (T') is a statistic that is a function of 7",
then W is ancillary.

For example, for a location family we have just seen that T" = (X1 —Xn, oo, Xpoq — Xyu) is
ancillary. Hence the statistics X; — X, = (X1 - Xn)—(Xo- X)) =T, —T5 and
X(n) = X(l) = max{Tl, —— Tn_l, 0} - min{Tl, i g Tn—la 0} are anmllaxy

In the proof above, it was important that not only do the individual Z;’s have distributions not
involving the parameter, but moreover their joint distribution does not involve the parameter.
This point is worth pursuing. Suppose we know that Y; has a distribution not involving 8
and also Y3 has a distribution not involving 6. Suppose W = h(Y1,Y3) where the function
h(y1,y2) does notinvolve 6 (e.g., A(y1,42) = y1 — y2 or h(y1,y2) = y1y2). Can we say
that the distribution of W does not involve @ ? This is not necessarily true, because the
distribution of (Y1, Y>) depends on the joint distribution of (Y, Y3). The marginal
distributions of Y7 and Y; individually do not completely determine their joint distribution, ‘f
which must also take into account the relationship between them. /

S e ]

e S |

In particular, if 77 and T are two ancillary statistics, it is not necessarily true that (77, T5) is
an ancillary statistic. However, if T} and 7T are known to be independent, then (T, T3) is
ancillary.

Example. Let (X, X;) have a Bivariate Normal distribution (see section 3.6) with known
means f; = pug = 0, known variances a% = og = 1, and an unknown correlation coefficient
p. Then each of the statistics X; and X, is distributed as Normal(0, 1), which does not
involve the parameter p. So, individually, each of the two statistics is ancillary. But jointly
their distribution involves p. In particular, Cov(X;, X3) = p. A

Next we look at a different variety of ancillary statistics.

Example. Let X, ..., X,, bei.id. Uniform(0, ) random variables for some 6 > (.
The statistics X;/X, and X/X (n) are ancillary. The easiest way to see this is to define
Z; = X;/6 and write X; = §Z;  noting that Z,, ..., Z,, are i.i.d. Uniform(0, 1). Then



<31 =

X1/X2=02,/0Z, = Z,/Z,, whose distribution does not involve 6. Check that X — 7
and X(n) = QZ(n) . Hence )_{'/X(n) = 37/92(,1) = ?/Z(n). A

This example is a special case of a general result about scale families.

Definition. Let g(x) be a known pdf on the real line and define f(z: LIRS %g(%) . The
family of pdf’s {f(z;6):6 > 0} is called a scale family, and § is called a scale paramelter.

Examples. (1) The family of Normal(0, o) pdf’s is a scale family with scale parameter o .

To see this, write down the pdf BF )= :7==-=1 exp| — —lg z?| and rewrite it as
P 2%02 20

T

1 1 1 1 1 1 BT

> Eexp[ - 5(3)2] = Eg(g) where g(z) = ﬁexp[ — 52°], which is the
Normal(0, 1) pdf.

(2) The family of Uniform(0, 8) pdf’s is a scale family with scale parameter § > 0. The pdf
can be expressed as f(z;6) = %I{O <z <l}= %I{O « % <1}= %g(%) where

9(z) = I{0 < z < 1}, which is the Uniform(0, 1) pdf.

emma. Let X;, ..., X, beii.d. random variables with pdf flz;8) = %g(%) in a scale
amily. The statistic T = (X;/X,, ... s Xn-1/Xp) is ancillary.

Proof. To see that the ratios are (jointly) ancillary, we consider Z; = Xi/6. Then X; = 62,
and Z; has pdf g(z) (which can be verified by using Theorem 4.4.1). Hence Ly ..., Ly are
i.i.d. with pdf g(z), so their joint distribution does not involve &. Therefore, any function of
them, as long as the function does not involve § , has a distribution not involving §. So the
lemma will be established if we show that 7" can be expressed as a function of the Z;’s. Each
entry in 7" can be expressed as T: = XifXn= 62,/6Z, = Zi/Z,.03

Consequently, any function of these ratios is an ancillary statistic (provided the function does
not involve §). For example, X1/Xo = (XI/X,,)/(Xz/Xn) = T1/T is ancillary, and so is

X/ X ?g mean{Ty, ..., Ty, 1} /max{T Ok, 251 sm(X)
()
Next we consider some 2-parameter families of distributions.
Example. Let X;,..., X, bei.id. Normal(y, 6?) random variables. The statistics
(X1 — X2)/(X1 — X3) and (X, — X1))?/3(X, — X)? are ancillary. To see this, define
Zi = (X; — p)/o and write X; = 0Z; + p,noting that Z;, ..., Z, arei.id. Normal(0, 1).
Then (X1 = X0)/(X1 = X3) = (021 + ) ~ (025 + w))/[(0Z1 + 1) — (0Z3+ p)] =
(21 = Z3)/(Z1 — Z3) , whose distribution does not involve por o A

This example is a special case of a general result about location-scale families.
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/f)eﬁmtmn Let g(z) be a known pdf on the real line and define f{x;0,8) = g( ﬂ) .

The family of pdf’s {f(z;6,6): —00 < 6 < 00,6 > 0} is called a[ocanon-scale family, @
§ is called a location parameter, and § is called a scale parameter.

-

Examples. (1) The family of Normal(y, 0%) pdf’s is a location-scale family with location
parameter f and scale parameter o . To see this, write down the pdf f(z;pu,0) =

exp[— %g(g:gﬂ)Z] and rewrite it as é[r-\/lg—?rexp[m %(I;”)ZJ = lg(m_“if)

Yol a (o2

where g(z) is the Normal(0, 1) pdf,
(2) The family of Uniform(6, § + 6) pdf’s is a location-scale family with location parameter
0 and scale paramcter 6 > 0. The pdf can be expressed as f(z;6,68) = I{8 <z <846}

I{O <z == b 2 1} = 39( 60) where g(z) is the Uniform(0, 1) pdf.

Lemma. Let X, ..., X, bei.id. random variables with pdf fl&2d) = %g(%s_—e)
in a location-scale family. The statistic T" =

(X1 = Xa)/(Xn-1 = Xn), ooy (Xncg — X)) /(X oy — X)) is ancillary.

Proof. To see that these difference ratios are (jointly) ancillary, we consider
Zi=(X;i—0)/6. Then X; = 6Z; + 6 and Z; has pdf g(z) (which you can verify by using
Theorem 4.4.1). Hence Z,, ..., Z, arei.i.d. with pdf g(z), so their joint distribution does not
involve @ or é. Therefore, any function of them, as long as the function does not involve ¢
or 8, has a distribution not involving 6 or . So the lemma will be established if we show
that T" can be expressed as a function of the Zi’s. Eachentry in T can be expressed as =
(Xi = Xo) /(X1 = X0) = ((6Zi+ 0) — (620 + 0))/[(6Zn1 + ) — (6Z,+6)] =

(Zi = Z2)[(Zn-1— 2,). O

Consequently, any function of these difference ratios is an ancillary statistic (provided the
function does not involve 6 or §). For example, (X1 - X9)/ (X1 — X3) =
(T1 - Tg)/(TI — T3) is ancullary

Conditional inference

In the example on pp. 28-29 above the minimal sufficient statistic contains a component that is
ancillary. In general, suppose X is a data vector with joint pmf or pdf f(x ;@) indexed by
an unknown parameter vector 6 = (4, ..., 0,),and suppose T = (T1,...,T,) is a minimal
sufficient statistic. When 7 > p, it is typically possible to write T" or, if necessary, a one-to-
one function of T' (which would also be minimal sufficient) as (W, A) where W has
dimension p and A is ancillary. Consider the example on pp. 28-29:
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Example. Let X, ..., X, bei.i.d. Uniform(§ — 1,0 + 1) random variables. Here we have
p=1. Above it was seen that (M, R) is minimal sufficient, where M = (Xy + X(my)/2

and R = X(m) — X(1), and that R is ancillary. We have r = 2. This falls under the
description above with W = M and A = R.

The Sufficiency Principle says that, in analyzing the data (under the assumptions of the
model), we can restrict attention to a minimal sufficient statistic. Another principle, stated
below, recommends that, furthermore, we should condition on the ancillary part of the
minimal suﬁlciem statistic

A Conditionality Principle: Let T = T'(X ) be a minimal sufficient statistic. Suppose we
can write T" = (W, A) where A is ancillary. Statistical inference about 8 should depend
only on the conditional distribution of W given A .

Example (continued). The principle recommends basing our inference about 6 on the
conditional distribution of M given R. It can be shown (see Exercise 4.2.8) that
M | R = r ~ Uniform( — s(1—1),0+ =-r).A

Example. Suppose we plan to select a simple random sample of n Corvallis voters and ask
them whether or not they favor a higher gasoline tax. Let X; =1 if the i-th voter says yes
and X; = 0 otherwise. A reasonable model is to assume X 1y .., Xp are i.i.d. Bernoulli(6)
0 <0 < 1. Suppose that the sample size n is not fixed in advance but is allowed to be
however many interviews can be conducted in 2 days. In such a situation we might regard n
as a random variable. Let us denote it by N to emphasize its randomness. It would seem
reasonable to assume that the distribution of N does not involve 6. With N regarded as
random, we would assume that, conditional on N = n s X1,..., X, areiid. Bernoulli(4).
The data would consist of Y = (N, X;,..., Xn). By applying Theorem 6.3.1 it can be
shown that T" = (N, E?LIX,-) is minimal sufficient. The statistic N is ancillary. The total

E(N
information in the sample can be calculated to be Iy(0) = Zr(8) = 9(1(—_35 . Typically we

3

would just pretend n is fixed and not worry about its randomness. This amounts to following
the conditionality principle and basing our inference on the conditional distribution of

W|N =n where W = Z?;IX,- - This conditional distribution is simply Binomial(n, 6).
Using the conditional pmf of W we can calculate the conditional information to be

Ty enll) = ()(T%-j . Considering all the possible values of the random variable N , we can
write this as Ty n(6) = ?(INTB) . Note that E[Zyn(8)] = Tw n)(0) . Thus the expected

value of the conditional information is equal to the total (unconditional) information. We
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conclude that by conditioning on the sample size (provided it is ancillary), we do not lose any
information (on the average). A
This example illustrates equation (6.5.12) in the textbook.

" A similar argument can be used in regression to justify regarding the explanatory variables as
\ fixed when they are really random. Regarding the explanatory variables as fixed is equivalent
%vto conditioning on them, and this does not lose any information (on the average) when the

Joint distribution of the explanatory variables does not involve the regression parameters.

Complete statistics

Definition. A statistic T'(X) is called a complete statistic for 6 if the “only” function h(T")
for which E¢[h(T")] = 0 for all @ is the zero function (i.e., h(t) =0 forall ¢). £

[P

Instead of saying “complete for € ” (or “sufficient for 6 ”), we sometimes say “complete for - -

the family of distributions” (or “sufficient for the family of distributions™).

Technical note. In this definition the word “only” has been put in quotation marks for
technical reasons. Actually the condition Eg[h(T")] = 0 holds for any function that is 0 with
probability 1, i.e., for any function h(T') such that Po{h(T) =0} =1 forall #. For
example, suppose T' ~ Normal(p,1) and h(t) = It3y(t) . Then h(t) = 0 forall t # 3.
Since a single point such as {3} has probability 0 with respect to a continuous distribution
such as a normal distribution, E,[h(T)] = 0 forall ;. A more technically correct statement
of the theorem would say that T" is complete for @ if the only functions h(T") for which
Ep[h(T")] = 0 forall @ are functions that are zero with probability 1.

1
The concept of completeness is useful in the context of unbiased estimation. \

- - ‘-—-——_i
It can be helpful to think of this definition in terms of what it says about noncompleteness.

Lemma. A statistic T'(X) is not complete if and only if there exists a nonzero function
h(T') such that Eg[h(T")] = 0 forall 8.

As is implicitly implied by the notation, the function h(T") must not involve the parameters.
(Also, to be technically correct — see the technical note above —— the function h(T) is
required to be nonzero on a set of positive probability.)

Example. Let X, ..., X,, bei.id. Normal(g, 1), —0o < p < o0.
(a) X is complete but not sufficient. A

(b) X = (X1,...,X,) is sufficient but not complete.
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(¢) X is complete and sufficient.
In (a), for X; to be complete means that, if ffomh(x)vlz—re—%(z—p)zdx = 0 for all

— 00 < g < 00, then h(z) = 0 for all z (except possibly for z in a set having probability
0). This is difficult to prove. In (b), to see that X is not complete, consider hMX) =

X1 — X and note that E,(X; — X3) = o — o = 0 forall p, but of course the function
z; — xo is not identically 0.

A complete statistic that is also sufficient can be very useful, as we will see in Section 7.5.2.

Example. Let X, ..., X, beiid.Poisson(\), A > 0. By the Factorization Theorem it is
not hard to show that "= X; + --- + X, is a sufficient statistic. We will show that it is also
complete.

(a) To do this, it is helpful to know the distribution of T'. By using Theorem 4.3.1, it is not
hard to show that T" ~ Poisson(n)).

(b) Now suppose A(T) is a function of T" such that Ey[h(T)] = 0 forall A > 0. We must
show that h(t) =0 forall t =0,1,2,.... Writing out the expectation more explicitly,

—nA t [ t
we have Ex[B(T)] = Eh(t) (”’\) — RN = 0.
t=0 :
15
We can cancel e ™ and write ZQ)G =0 forall A > 0, where ¢; = h(t)%—.
t=0 :

(c) If > At =0 forall A > 0, then we can conclude that ¢t =0 forall t. To see this,
t=0

it may help to write out the sum as ¢y + c; A + coA2 + c3A3 +--- = 0.

Letting A — 0, we find that ¢ = 0. Now we have ¢; A +C2)\2 +03/\3 + o= 0.
Factor out A and cancel it from the equation to get ci+cod+e3)2+ .. =0.
Letting A — 0 as before, we find that ¢; = 0. Continuing in this way,

we find that ¢, = 0 forall ¢.

t t i
(d) Now we can say that h(t)™ = 0 forall ¢. Since % # 0, we must have h(t) =0. A
: t! - t!

Recall the following lemma about sufficiency from p. 8 above.

Lemma. Suppose a statistic W is a function of another statistic 7".
If W is sufficient, then so is T".

For the property of completeness we have an analogous lemma.

Lemma. Suppose a statistic W is a function of another statistic 7.
If T is complete, then so is W.
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Proof. Suppose Eg[h(W)] = 0 forall @. We must show that h(W)=0. Since W isa
function of T', then h(W) can be viewed as a function of T'. Diagrammatically,
T — W — h(W). Now we can invoke the completeness of 7" to conclude h(W) = 0.

Lemma. Suppose a statistic W is a one-to-one function of another statistic T".
If T' is complete and sufficient, then so is W

A statistic T'(X) either is equivalent to the data vector X (if the function T'(z) is cne-to-
one) or, more typically, is a reduction of X. To be sufficient, it cannot be too much of a

reduction because it must retain all the information that X contains about & }

Usually the data vector is not complete. In particular, if X is a vector of iid random
variables, then E, [X; — X2] = 0 (provided the distribution has a finite mean). To be
complete, a statistic T'(X ) must be reduced or “condensed” enough that no function of its
components can be constructed to have zero expectation.

{I‘o be both complete and sufficient, a statistic must reduce X to just the right degree. So
complete sufficient statistics are a very special kind of statistic. They do not always exist.
They do exist when the distribution of the data vector is in a regular exponential family. See
p- 20 above for the general definition of a regular exponential family. We will concentrate on

the i.i.d. case, but it should be mentioned that the following general theorem is true.
b=

Theorem. Let X be a random vector with joint pmf or pdfin a regular exponential family.
The statistic T = (Ry(X), ..., Re(X)) is complete and sufficient.

The same statistic is minimal sufficient, as seen in the theorem on p. 20. The i.i.d. case is:

Theorem 6.6.2. Let X;,..., X, beii.d. with pmf or pdf in a exponential family,
k

f(z:8) = a(ﬁ)h(m)cxp{ b;(6) Rj(x)}, 0= (61,...,8,) € 0.
1

j:
Suppose the exponential family is regular, satisfying (a) k = p, (b) © contains a -
dimensional rectangle, and (c) the functions b;(8) are differentiable. The statistic

T = Ri(Xy),.... Ru(X))) is complete and sufficient.
i=1 i=1

This theorem could be used in the two preceding examples.

Examples. (1) Let Xi,..., X, bei.id. Normal(y, 1), 0o < g < 0o0. One write the pdf of
Normal(y, 1) in the exponential-family form with k = p = 1 and Ri(z) = z. Regularity
conditions (b) and (c) are also met. So 2_X, is a complete sufficient statistic. Since X isa
one-to-one function of 3 X;, it is also complete and sufficient.
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(2) Let X,,.... X, bei.id. Poisson(A), A > 0. One write the pmf of Poisson()) in the
exponential-family form with k = p = 1 and Ry (z) = z. Regularity conditions (b) and (c)
are also met. So Y_X; is a complete sufficient statistic.

(3) Let X1,.., X, bei.id. Normal(y, 02), 00 < 1 <o00,0%>0. Ason pp. 18-19 above,
the pdf of Normal (s, 02) has the exponential-family form with & = p = 2 and Ry(z) = 2
and Ry(z) = x. Regularity conditions (b) and (c) are also met. So (3} X?,5°X,) isa
complete sufficient statistic. Since (X, 5?) is a one-to-one function of (X237 X))

(see p. 9 above), it is also complete and sufficient. A

Next we discuss the relationship between complete sufficiency and miniimal sufficiency. In
Theorems 6.3.3 and 6.6.2 (and the more general theorems on P- 20 and p. 36) we see that for

regular exponential families, the complete sufficient statistic coincides with the minimal
sufficient statistic. In general:

e Every complete sufficient statistic is minimal sufficient.

* Not every minimal sufficient statistic is complete sufficient.

e For any statistical model, a minimal sufficient statistic always éxists.

e A complete sufficient statistic may not exist.

e If'a complete sufficient statistic exists, then a minimal sufficient statistic will be

complete sufficient.
N 5

Example. Let X, is iy DE 1.i.d. Normal(6, %), 0 > 0. As seen in the example on pp. 19-
20 above, the statistic (3" X2, 2_X;) is minimal sufficient, and hence so is the one-to-one
function (X, S?). However, it is not complete, as seen in Exercise 6.6.3. A

In general, suppose X is a data vector with Joint pmf or pdf f(x;6), 6 = {015 25.5.:05).
There always exists a minimal sufficient statistic, say T" = (Tj, ..., T.) . The following two

statements are “typically” true, although artificial counterexamples can be constructed.

L v >3,
2. r=p & Tk complete sufficient
In the preceding example, note that r = 2 and p=1. Since r > p, statement 2 indicates

that the minimal sufficient statistic is “probably” not complete. The statement is only

“typically” true, and so it is a good idea to formally verify the noncompleteness.

Let us look at a model that is not an exponential family.
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Example. Let X;,..., X, bei.id. Uniform(0,6), § > 0. On p. 16 above we saw that a
minimal sufficient statistic is the sample maximum X(n)- Herewehave r=p=1,s0 X (n)
is “probably” complete sufficient. We can verify this.

n—1
() Asin Example 4.2.7, the pdfof T' = Xm) is f(t;0) = m;n IH{o <t < 6}.

(b) Suppose A(T) isa function of T such that Eg[h(T)] =0 forall 6 > 0. We must show
that A(t) = 0. Writing out the expectation more explicitly, we have

0 4 n—1 g
Eolh(T)] = [ h(t)f(t;0)dt = [h(t)Pb—dt = o= [h(t)tldt = 0.
—00 0 0

0
We can cancel (—;% and write fh(t)t”‘ldt =0 forall § > 0.
0

(c) Now we appeal to the Fundamental Theorem of Calculus, which says that
d ¥ d?
& Ja(t)dt = g(y) . Therefore, 35 J Rt 1dt = h(0)6" !,
a U]

so h(6)6"~! = 0 forall 6 > 0, which implies h(0) =0 forall 8 > 0.

(d) The role of @ in the statement h(6) =0 forall 8 >0 is simply a mathematical variable.
An equivalent statement is obtained by using any other symbol, such as h(t) = 0 for all

t >0 (or h(u) =0 forall u>0).

(¢) Itis enough to show that h(t) = 0 forall ¢ > 0, because Py{T > 0} =1 forall 4.

We can conclude that T is complete. /A

A strategy for trying to find a complete sufficient statistic is the following.

1. If you have a random sample from a distribution in a regular exponential family,
apply one of the theorems on p. 36 above.
2. Otherwise, find a minimal sufficient statistic T(X) (you can use Theorem 6.3. 1).
Let r and p denote the dimensions of T° and @ respectively.
3. If r > p, you can probably find a nonzero function h(T') with zero expectation, thus
showing that T" is not complete. This implies that no complete sufficient statistic exists.
4. If r = p, it is probably true that T" is complete. To actually prove that it is complete is
ofien difficult.

Theorem 6.6.3 (Basu's Theorem). If T(X) is complete and sufficient, and if S (X) is
ancillary, then T" and S are independent for all 4.

Proof (in the discrete case). To show that 7" and § are independent, we will show (*)
Po{S =3s|T =1t} = Po{S = s} forall 6.
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(a) In equation (*), the left-hand conditional probability does not depend on @ because T is
sufficient, and the right-hand probability does not depend on 8 because S is ancillary. So

we can drop the subscripts . Thus we want to show M P{S=s|T =t} =pP{5 = s}.
(b) Define h(t) = P{S = s|T =t} —P{S = s} and regard s as being a constant. Part (a)
shows that this is a valid statistic. We want to show that h(t) = 0. Noting that, for fixed s 3
P{S = s} isa constant, we have

Eolh(T)] = Eo[P{S = 8| T'}] - PS5 = s}
= 2 P{S =8| T =t} Pp{T = ¢} —P{S = s}
= in{S:sandT:t}mP{S:s}
= Ptg{Sz s} ~P{S =s} = 0 forall 4.
By the completeness of T, we must have h(T) = 0 (with probability 1). O

Example. Let X, ..., X, beiid. Normal(y, ¢?). In Theorem 4.4.2 it was proved that X
and S? are independent. An easier proof can be given by using Basu's Theorem. Fix an
arbitrary value of o2, Consider the family of distributions {Normal(y,6?) : —co < p < 00}
For this family, with o2 regarded as known, X isa complete sufficient statistic (use Theorem

6.6.2) and S? is an ancillary statistic (see p. 28 above). By Basu's Theorem, they are
independent. A

Example. Let X,,.., X, beiid. Normal(y , o%).

() On p. 37 we saw that (X, 5?%) isa complete sufficient statistic. By Basu's Theorem, it is
independent of any ancillary statistic.

(b) We have a location-scale family and so, as seen on p. 32 above, a ratio of differences such
as (X; — Xp) /(X — X3) is ancillary.

(c) The statistic W = (X; — X3)2/5? is also ancillary. To see this, let Z; = (X; — )/ so
that X; = o2, + pwand Zy,...,Z, areiid. Normal(g%). Check that X; — X, = —s .
0(Z1 — Z,) and 5% = Y (X; — X)) (n—-1)= o (Zi - Z)}(n—1) = 0252, so that
W= (X, — X5)2/S% = (2, — Z,)2/S%, which is a function of the Z;’s. The function does
not involve any parameters and the joint distribution of the Z;’s does not involve any
parameters, so the distribution of W does not involve any parameters.

(d) We can use the independence of W and S? to calculate the expectation of W . (To be
continued) A

Suppose we have two random variables U and V.

(a) If we want to calculate the expectation of their product,
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we must remember that, in general, E(UV) # E(U)E(V).
_(b) In the case that U and V are independent,
f’then E(UV) = E(U)E(V) (see Theorem 3.5.1).

(c) If we want to calculate the expectation of the ratio of U and V,

E(U
éwe must beware that, in general, E( V) # E%V;

Even if U and V' are independent, we are not guaranteed that the inequality would become
an equality. For example, if X;, X, are i.i.d. Bernoulli(1), then

1+X:y 9 _ E(1+X,)

E(I7x,) = 8 # 1= 5iegy)-
(d) Inthe case that U/V is independent of V, then E(g) o 20
is indepen , V) = 5

To verify this, note that E(U) = E(%V) = E(%)E(V), using the independence in the
second equality. Now divide the equation by E(V). (Technical requirements: It is assumed
that P{V # 0} = 1, E(V)) # 0, and all the expectations exist.)

Example (continued). Let Xy, ..., X, beiid. Normal(g , 0%). Above we showed that W =
(X1 — X3)?/5? is independent of S2. Therefore, by item (d) above,

(X1—-X5)° E(Xi—X)"] 202
BT = Tem = =

Further discussion. The purpose of the following informal discussion is to try to get a better
“feeling” for what completeness means. We will be using the word “information” imprecisely
— not in any formal quantitative sense. Let us say that “relevant” information is information

that is useful for making inferences about the parameters.

e A statistic is sufficient if and only if it contains all the relevant information that is available.
- - - - "g -
Note that a sufficient statistic may also contain some me&vaﬂ{ information.

e A statistic is mlmmal sufﬁ01ent if and only if (1) it contains all the relevant information and
e LAY
(2) it contains o1 information.

Relevant information can be directly about the parameters or it can be only indirectly relevant,
such as by providing an estimate of the variance of an estimator of a parameter. Recall that a
minimal sufficient statistic can have components that are ancillary. An ancillary statistic
contains no information that is directly relevant for ma:k—mg—m ce-abeut the parameters, but
it can provide useful information about the precision of estimators.

e A statistic is complete if and only if it contains only directly relevant information.
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Consider a statistic T = (Th,...,T;). It contains a certain amount of “information”. Each
component 7; contains a piece of information. In fact, each function h(T") represents a piece
of information derived from 7. (The components are just special functions, h(ty,...,t,)

=t;.) If Eg[h(T')] = 0 forall @, then we can regard h(T') as a piece of information that
says nothing directly about €. The existence of such a function shows that T" contains some
information that is not directly relevant. Correspondingly, the formal definition of
completeness says that if such a function h(T') exists, then T is not complete.

; Point estimation

On p. 1 above there was a statement of the general goal of statistical inference. In Chapter 7

we study the type of statistical inference called point estimation, in which the general goal can
be said to be the following.

Given a data vector X and a model for its distribution,
/ in the form of a family {f(x;6): 6 ¢ ©} of possible pmf's or pdf's for X ,
and given a real-valued function 7(6) of the parameter vector,

€ want to estimate what the true value of 7(6) might be.

*O’u;_e,s_timgtew\i{lbg_q_gmputed from the data. Any real-valued function W{(X) of the data
vector can be regarded as an estimator of 7(6) . In order to be computable from the data, the
function cannot involve the parameters. We begin by considering all possible functions as
estimators, but of course many of them will be found to be very bad estimators. We make a

distinction between the words estimator and estimate. An estimator W(X) isa function of
'—"——_-‘__.-—_‘—-ﬂh—-u..._.__'h_ S ——— T P R P, SR e i s S B o o A .

S a._#_%__,ﬁv___.______,7,4?_--—-' . .
After observing the data X = =, the numerical value W () is called an estimate.

the data vector X regarded as a vector of random variables before they are agt&@!ﬂﬁ?ﬁfvfd-

Method of moments

This method is based on the idea that a sample mean is a natural estimator for a population
mean.

Example. Suppose X1, ..., X, arei.id. Bernoulli(p) random variables and P 1s unknown.
The sample mean X is a natural estimator of the population mean E(X;) = p. Moreover,
for any function 7(p), it is reasonable to use 7(X) to estimate 7(p) . For instance, we might
use X(1 - X)/n to estimate Var(X) = p(1 - p)/n. A

More generally, suppose X1, ..., X,, are i.i.d. with pmforpdf f(x;#) for a real-valued
parameter 6. Then E(X)) is a function of 0, say E(X1) = u(0). The method of moments
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is to equat ,u(a) = X and solve for 0. This equation can be expressed as
estimated population mean = sample mean.

That is, the method of moments estimator of @ is the value of 6 for which the population

mean is equal to the sample mean. Then we estimate 7(8) by 7(8) . The word ‘moment
refers to the fact that 1(6) is the first population moment and X is the first sample moment.

Example. Suppose X1, ..., X,, arei.id. Geometric(f), 0 < 6 < 1. (In Mukhopadhyay's
book there are two slightly different definitions of the Geometric distribution; see formula
(1.7.7) and Exercise 7.2.6. We will use (1.7.7).) 1t can be shown that E(X,) = 1/6. Using
the method of moments, we set 1 /8 = X , and then solve to get 6 =1 /X . In order to

estimate SD(X;) = /1 —6/0, weuse /1 — /6 = VXX -1). A

Example. Suppose X;, -y Xp are i.i.d. Uniform(0, 6), 6 > 0. The population mean is
E(X1) = 6/2. Using the method of moments, we set §/2 = X , and then solve to get
0 = 2X . To estimate P{X; < ¢} = min{c/0,1} we can use min{c/6,1} . A

Now suppose X, ..., X, are i.i.d. with pmf or pdf f(x;6) for a parameter vector
6 = (01, ...,0,). Then the j-th population moment is a function of @, E(Xi’) = pi(8) =

n 3 e
#i(61,-..,8,). Let m; = > X]/n, the j-th sample moment. (Note that m; = X and
i=1

11(8) = p(8).) The method of moments is to find the value of @ for which the first D
population moments are equal to the corresponding sample moments. That is, we solve the D
equations pj(gl, ...,'é,,) =mj, 3=1,...,p, forthe p unknowns 61, ...,Ep. Then we
estimate 7(0) by 7(6). For p = 2, the equations can be expressed as

stimated population mean = sample mean
estimated population 2nd moment — sample 2nd moment

Example. Suppose X, ..., X, arei.id. Normal(y, o) random variables. Then 6 = (y, o?)

n

== 1
and 1(0) = E(X1) = 1, pp(8) = B(X}) = 42 + 0%, my = X, my = W D
i=1

= n o ST,
Set i = X and ﬁz—l—EQ:%ZXE. Solvetoget fi= X and 5% = %EX?kXQZ
i=1

%E(X,- — X)?, a modified sample variance (dividing by n rather than n — 1 i

To estimate the coefficient of variation T(p,0%) = o/, use

T(E,0%) =5/ = \/EZ(—‘;—’ s 1)2_ 7!
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For p = 2, note that the method of moments equations
% _ s 1
Mm@ =X and m@)=Lyx

are equivalent to the equations

~ 1 o
11(8) = X and Varg(Xl) = EZ(X’ = X)2
1 v 1 <=2
because Var(X;) = 115(8) — 14,(8)? and 2 (Xi-X)= T Xi-X
estimated population mean — sample mean,
estimated population variance = modified sample variance .

Example. Suppose X, ... Xy are i.i.d. Gamma(a, §) random variables. Then E(X:) = a3
and Var(X;) = of?. Set &8 = X and &ﬁz = %—Z(X,- — X)2. Solve to get
&=X/=Y(X; - X)? and B = Ly x-XYX. A

Example. Suppose X, ..., X, areiid. Uniform(#;, 63) random variables. Then

E(X1) = (61 + 6,)/2 and Var(X,) = (8, — 01)%/12. Set (6, +0,)/2 = X and

(@2 ~ 6:)2/12 = “TITZ(X{ -X) = LLer oty toget §; = X — 3(n—1)

n i

S and

— -1 .
Hs = X é(nTﬁ)S. To estimate P{X; < gl = max{min{(c — 6;)/(0, — 01),1},0} we
can use max{min{(c —8,)/(f, — 0:),1},0}. A

If a moment in one of the method-of-moments equations does not involve @, then the method
must be modified.

Example. Suppose X7, -y Xy are i.i.d. Uniform( — 6, 6), 8 > 0. The population mean is
E(X;) = 0. This cannot help us estimate 6, so we try the next moment: E(X?) = §2/3. Set

52/3 = %EXQ and solve to get § = 1/ %ZX?'. A

Maximum likelihood estimation

To analyze a set of data = = (z1,...,%,), we postulate a model. That is, we postulate that x
has occurred as the observed value of a random vector X = (X7, ..., X,,) with distribution
given by a joint prof or pdf f(z; 6) for some 6 = (6y,...,6,) € O . According to the model,
one of the vectors in © is the vector of true parameters — the “true” parameters being those
that specify the distribution of the random mechanism that generated the data — but we do not
know which vector it is. A sample can provide only limited information about a population.
In other words, the data z contains only a limited amount of information about the
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distribution, so we cannot hope to use the data to obtain the exact value of the true 6. The
goal of point estimation is to find a vector @ that is “close” to the true 8 .

The method of moments chooses 6 so that the first p population moments are equal to the

first p sample moments. Intuitively, it seems that such a & should be “close” to the true @ :

he method of maximum likelihood (ML) chooses @ so that the Joint pmf or pdf f(x ;@) is
maximized, where z denotes the observed data (rather than being simply a mathematical

ariable). In the following example we will see that this is a sensible procedure. This is called
the method of maximum likelihood because f (z;8), when viewed as a function of @ for a
fixed value of z, is called the likelihood function. We denote it by L(6;x) or L(6) (so that
L(6;z) = f(z;8)).

Example. Suppose we toss a bent coin 10 times and see which tosses land head up. We
record 1 if the toss is a head and record O if the toss is a tail. Suppose we observe x =
(1,0,0,1,1,1,0,1,1,1) . For the model we suppose Xj, ..., Xjo areii.d. Bemoulli(),
0 <8 <1. Thejoint pmfis f(z;0) = Po{X = z} = [[%,P{X; = z;} =

[1:2,6% (1 — 0)1=%i = g7 (1 — 9)10-X%i — ¢7(1 — 9)3. So, for example,

if =5, then P{X =(1,0,0,1,1,1,0,1,1,1)} = (:5)7(.5)3 = .0009765 .

If 6 = .6, then P{X = (1,0,0,1,1,1,0,1,1,1)} = (.6)7(.4)3 = .0011943 .

ﬁ hus 6 = .6 seems “more likely” to be true than 6 = .5. The ML method is to choose the
value of @ for which P{X = (1,0,0,1,1,1,0,1,1,1)} is the largest, that is, for which
07(1 — 6)3 is the largest. To find the maximum of a function, it often helps to calculate its
derivative (if the derivative exists). In particular, the sign of the derivative tells where the

function is increasing and where it is decreasing.

dd—9 [97(1 - 9)3] = ---(can use the product rule of differentiation) - - -
= 6%(1 — 6)2(7 — 100).

Since 65(1 — 0)2 >0 for 0 < 6 < 1, the sign of the derivative is the sign of 7 — 106. The
derivative is 0 when 0 = .7, is > chhen f < .7,andis <0 when € > .7. When the
derivative is positive, the function is strictly increasing, and when the derivative is negative,
the function is strictly decreasing. From this we see that the function has its maximum value
at 6 = 7. We say that the MLE of 6 is .7. A

In general, if the likelihood function L(8) is differentiable, it is often easier to differentiate
log L(#) . Since log is a strictly increasing function, § maximizes L(#) if and only if 6
maximizes log L(f)) . In the preceding example, L(8) = 67(1 — 6)3, so log L) =
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7log 6 + 3log(1 — #) and qglog L(6) = 6§~ 1o = a(i—0) - As before, the sign of the

derivative is the sign of 7 — 106.

efinition. (a) Fora given value of z, a maximum likelihood estimate (MLE)of @ isa
alue 6 € © such that L(;z) > L(0;z) forall 8 € ©. We sometimes write § — 6(x).
(b) A maximum likelihood estimator (also denoted MLE) of 6 is a statistic 6(X) such that
@(x) is an ML estimate for every value of z in the sample space.
(c) For any function 7(6), the ML method estimates it by (6) .

ﬂonsider the case when 8 is real-valued. Often, an MLE can be obtained as a solution of the
equation (*) H%L(B) = 0 (or equivalently, the equation %log L(8) = 0). However,
sometimes L(6) is not differentiable at all §. When L(6) is differentiable at all @ and we
have found a solution 6 to (*), we must be aware that the solution is not guaranteed to be a

valid MLE. To be valid, the solution must satisfy: (i) @ is a global maximum of L(#) and (ii)
feo.

(i) How can we establish that 9 is a global maximum? Note that if g(t) is a differentiable
function and if the derivative a% g(t) is 0 at t =7, then 7 could be a global maximum but, in
general, it might be only a local maximum or a local minimum or a stationary point.

If we also calculate the second derivative adtiz g(t) at t ="¢ and find it to be negative,

then ¢ is not a local minimum nor is it a stationary point, but it could still be a local maximum

and is not necessarily a global maximum. (Local information at  cannot tell us about a
global maximum.)

o 2
We can establish that 7 is a global maximum by showing that the second derivative %5 g(t)

is negative or zero for all ¢.

Another way to establish that 7 is a global maximum is to show that c% g(t) is positive for all
t < and is negative forall ¢ >¢.

(if) Sometimes we “fudge” and allow 9 to be on the boundary of ©. Another option is to
extend © to include its boundary.

Example. Suppose X;, cwory Kogy ATE AT Bemoulli(6), 0 < 6 < 1. The likelihood function is
L(#) = 0X%i(1 — )2 %
It is equivalent, but more convenient, to maximize

log L(0) = Y zilog 6 + (n — > zi)log(1—6).

Its derivative is
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d _ Ym n—3z _ n(z—0)
C dglos L) = = - 155 = o) -
The sign of the derivative is the same as the sign of T — 6, which is positive for 0 < 8 <7,
is equal to 0 for § = T, and is negative for T < 8 < 1. So 6 =7 is the global maximum of
L(0) . In the case that z; = --- = z, = 0, we have 9 =0,but 0¢(0,1) = O. If we strictly
followed the definition of MLE, we would say that no MLE exists in this case. However, the \\

MLE does exist if we-redefine the parameter set to be O = [0, 1], which includes 0. The

drawback of this option is that the family is no longer an exponential family. A
i T B
Example. Suppose Xi,..., X, arei.i.d. Normal(y, 1), — oo < p < oo.

L{p) = tillf(mi;u) == (7127) exp[— 5> (= —#)2]
log L(p) = constant — %E(m, — p)?

%logl}(u) = - %22(93:‘ —p)(=1) = Xz —p)

=2 xi—np =n(T—p).
As in the preceding example, the sign of the derivative shows that g = T is the MLE of 1.
For any function () , the ML method estimates it by 7(ji) . For example, the MLE of >

( is j(ﬂ.
Example. Suppose Xi, ..., X, arei.i.d. Uniform(0,8), 6 > 0.
L(G) = H%I{O <z < 9} = %I{O <z <Zn) < 9}
i=1

It is convenient to let the sample space be (0, c0) rather than the whole real line. Now
1
L(G) = g_nI{I(n) < 9}
log L(6) = — nlogf + log(I{zp) < 0}).

Note that we have a problem here, because | {z(m < 0} canbe 0 and log(0) = — co.

Let us look at L(#) directly, without taking the logarithm. Remember that z(, is regarded as

a fixed value. For 6 < x(y), the indicator is 0, so L(6) = 0. For 0 > x(y), the indicator is

1,s0 L(6) = 1/6". If we graph L(6), we see that it is not differentiable and is not even

continuous. For 0 < 8 < x(y), the likelihood function is 0, but then at 6 = x(,), the function

jumps up to a height of 1/ :v?n), and then decreases for § > x(,). The graph makes it clear that

the maximum is at § = Ty B

Now suppose 8= (8- 8,)is-a vector—H-the tiketihood function is differentiable-with
L _respect to @, forall j=1,...,p, thenthe MEE camroftenbefound by-selving the equations-
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Now consndcr the mulhparamctcr case in which @ = (6y,...,0,) is a vector. If the likelihood

Q = functlon is d1fferent13blc with respect to §; forall j=1, ..., p, then the MLE can often be
found by solving the equations

—_~ 6 o~ —~
3—91L(§1, 0p) =0, 0, 5g-L(01, .., 0p) =0

to obtain & = (61, ..., 0,) . These equations are sometimes called the likelihood equations.

@or 8 to be an MLE, it must be checked that 8 € © and that  is a global maximum —
which is often true, but not always. As before, it is equivalent and often easier to maximize
log L(64, .., 8,) , which is often achieved by solving

%logL(ﬁl, ...,Ei,,) =0y iy 3(3 log L(G1, ... ) == fib.
‘These equations are also sometimes called the likelihood eqd?ions. Note that log v
L(6) =log] [\ f (z:; 6) = 3o, log f (x+; 6) -
Example. Suppose Xj, ..., X, arei.i.d. Normal(y, 02). The likelihood function is

L(p,0) = (V;r—a)nem[—gl;zz(mi—#)z]-

We want to find 7 and & that maximize L(y,o), or equivalently, maximize
Q log L(p,0) = —nlogy/2m — nlogo — 2}72@5 —p)?.

The procedure has three steps: (1) calculate the partial derivatives of log L{x, o) with respect
to p and o, (2) set the two partial derivatives equal to 0 and solve for zi and &', and (3)
verify that (f,@) is a global maximum of log L{y, o) .

~ Step 1. The partial derivatives are
o) 1
aplos Lk, 0) = S22 (i~
and
1
aalogL(u, 0) = — T+ 53 (i — ).

s Step 2. Note that (8/8y)log L = (n/0®)(Z — ) . Setting this equal to 0, we obtain fi = Z.
(This example is special in that the parameter o cancels out of this equation. Typically, if the
~ equation (8/80;)log L(6:,02) = 0 is solved for 64, the solution is a function of 6;.) Settmg

iy

_'*(a/aa)logr, 0, we obtain & = /1 Y (z: — )2 = /L D(wi —7)2.

Stcp 3. Now we need to venfy that ( o) isa global maximum Verifying a global 18

el B

~—~——
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and <O for 4 > Z. So, for every fixed value of o, log L achieves amaximumat g = %.
Next, we want to find a global maximum of log L(Z, ) as a function of . We can write
(8/80)log L(Z, 0) = (n/o®)(6 — 02) . Hence this derivative is positive for o < & and is
negative for 0 > . This implies that & maximizes log L(z,0). Therefore, the solution
(1, 3) to the partial derivative equations maximizes log L(u,0). Thus, the MLEs of 1 and
o are given by fi(X) = X and 5(X) = \/% Y(Xi—-X)2.A

Example. Suppose X, , ..., X, areiid. Gamma(e, §). The pdfis f(z;a, T
Ta)p ) ﬁ“ ~1-2/B for z > 0. Rather than maximize the likelihood function directly, it is

casier to maximize the log-likelihood function. We have log flose.0) =
—logl'(a) — alog B+ (a — 1)log z — 2/, so the log-likelihood function is
. _
log L(a, B) = —nlogl'(a) — nalog B+ (o —1)3 log z; — Zx, B

i=1 5
The general procedure has the same three steps as in the preceding example: (1) calculate the
partial derivatives of log L(a, f) with respectto o and 3, (2) set the two partial derivatives
equal to 0 and solve for & and B, and (3) verify that (@, B) is a global maximum of
log L(e, B) .
Step 1. The partial derivatives are
aaa logL{o, 8) = — n%logl"(a) —nlogff+ ilog 2

=1

and

%IogL(a,ﬂ) = — %q -+ 'ﬁlle‘i-

Step 2. In the preceding example we had the-good.fartune that we could obtain'gn explicit o
formula for the MLE i in terms of the z;’s by setting (B/By)logL 0. Here weélrc notas e
=5 i{‘t X x

fortunate, but we are still able to obtain an cxphc1t solution for B in terms the :c‘ and a by :
setting (8/80F)log L = 0. The SOIUHOH is B = 1_1:13‘ = :z:/a Now plug ﬂ mto the 3
equation (8/0a)log L = 0 to obtain 5o - e

*) loga — (@) = logT — —Elog o
:-"1
where 9(a) = logI‘ (@), called the digamma funct.lon. There

solution & Eo“—‘equatlon (*) leen the values of the data,L however' Ve ¢
/"-_-—_7 .‘.
numeﬂcalp_rgcedm;@ to. obmtgx_nfum Q&Lx,alm Suc u




_49 -

SAS and S-Plus but not in Matlab. Tables are available in the book Handbook of
Mathematical Functions edited by Abramowitz and Stegun.
Step 3. Let @ be a solution to (*) and let 3 = z/a. Itis difficult to verify that these values

give a global maximum of the likelihood function, so we will omit this step. In complicated

problems, the “MLEs” of the parameters are often found by solving the likelihood equations

and without checking whether or not they give a global maximum, Typically such M

e ——

have good properties, even though they may not always be valid MLEs. A

Suppose X is a data vector with joint pmf or pdf f(x ;0) where 8 is an unknown real-
valued parameter. Let § be an MLE of §. The MLE of a function 7(0) is 7(6), according to
our definition on p. 45 above. Suppose 7(0) is a one-to-one function. Then we could choose
touse 7 as the parameter for our model instead of 6. For example, the family of Exponential
pdf’s can be written as f(z ;) = ﬂ‘legm/ﬁ, B>0,oras f(z;A) = Ae %, A > 0. Here
6 = and 7(0) = 1/6 = X. So, in general, we can write the pmf or pdf as f(z ;) or

f(z ;7). This gives two ways to obtain an MLE for 7(8). The first way is to maximize
f(z;6) to obtain an MLE 0 and plug into 7 = 7(0) . The second way is to maximize

f(z;7) todirectly obtain 7. Fortunately, both ways lead to the same estimator.

Example. Let X, ..., X, beiid. Exponential(8). The pdfis f(z;3) = %e‘z/}6 for

z > 0 for some unknown parameter 3 > 0. Let A = 1/8. (The parameter 3 is the mean of
the distribution, and the parameter A is called the rate.) Let us derive the MLE of ) in two
ways.

(a) First find the MLE of 3.

L(B) = f(z;p) = r'lle"mﬁi = exp[— 13°m]
’ it Y g B4
log L(B) = — nlogf — %Z:c,—

9 = 1l _ne,

aﬁlogL(ﬁ) == ﬁ e ﬁ'z th - ﬁ2 (ﬂ $)
We see that the MLE of B is f=%. The MLEof A =1/8 is A =1/8 = 1/%.
(b) Now we use the parameterization in terms of ) .

L) = f(z32) = [IAe % = Arexp[ - A3°z]
i=1 i=1

log L(A) = nlogA — A\ z;

a
—alogL(A) = 1;"—2:1:,- = T;—x(

We see that the MLE of A is A =1 /T , which agrees with the result in part (a). A

—A).

8=
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In general, suppose X is a data vector with joint density (pmf or pdf) f(z;8).
Lemma. Let & be an MLE of 6, maximizing f(z ;). Suppose v = h(8) is a one-to-one

transformation of @, so that the joint density can be expressed as f(z ;7). Suppose ¥ is an
MLE of ~, maximizing f(z;+). Then 4 = h(8).

For example, suppose X ,..., X, are i.i.d. Normal(y, o?). To find the MLE we can
differentiate with respect to g and o? to obtain the MLEs i = T and &° = 5 (z; — 7)*/n.
Here we are parameterizing the pdf’s by the parameter vector (p, 0?). Alternatively, we can
parameterize by (u, o) and differentiate with respect to p and o, as we did on p. 47 above,
to obtain fi =% and & = />, (z; — T)?/n.

To see why the lemma is true, let us regard the parameter vector @ as a label for the
distributions in a family of distributions. For instance, the Exponential distributions are often
parameterized (or labeled) by their means, but some books parameterize them by their rates
’(ic'(‘:___all__tl_l_a}t the rate is the reciprocal of the me;ag_l. The labels are useful, but the distribution is_
what ultimately matters. By definition, to find the MLE, we must find the distribution whose
pdf gives the greatcs::;lue to the observed value of the data vector . Let's call this the “ML
distribution”. For a particular parameterization, the MLE of the parameter is the value of the
parameter that labels the ML distribution. In the lemma, v = h(8) labels the same
distribution as 6. Therefore, if 8 labels the ML distribution in the 8 parameterization, then
RS h(’é) labels it in the -y parameterization.

Comparing estimators

Suppose X, ..., X, are i.i.d. Normal(x, o2) and suppose we want to estimate y. The
method of moments estimator (MOME) is X (see p. 42 above). This is also the MLE (see pp.
47-48). The sample mean X is a natural estimator of the population mean p. Since a Normal
distribution is symmetric about its mean, p is the population median. It also seems natural to
estimate the population median by the sample median X . Which of these two estimators, X
and X , is a better estimator of p? Later we will argue that the sample mean is better. But

first we must ask: what is a good way to compare competing estimators?

For comparing two estimators, three relevant properties are: the bias, the variance, and the
mean squared error. Let T' be a real-valued statistic that is being considered as an estimator of
7(@) . The bias of T is Eg(T') — 7(8) . If the bias is 0, then the estimator is said to be
unbiasﬁhat is, T' is an unbiased estimator of 7(0) if and only if E¢(T") = 7(0). The
bias can be said to measure the “accuracy” of the estimator. The “stability” of an estimator
can be measured by its variance Varg(7T') (or by its standard deviation (SD)). The mean
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squared error (MSE) of an estimator is MSEg(T") = Eg[(T — 7(6))?] (or by its root mean
squared error). (The root mean squared error (RMSE) is the square root of the MSE; it has the
advantage that its units are the same as those of 7(6) .) The MSE (or RMSE) can be said to
measure the “reliability” of the estimator.

Theorem 7.3.1. MSE(T') = Var(T) + (Bias(T))?

Proof. Let Z =T — 7(6) . The theorem follows from the identity
E(Z%) = Var(Z) + (E(2))2. O
Corollary. If T is unbiased, then MSE(T’) = Var(T).

We prefer estimators that have small mean squared error. According to the theorem, such an
estimator must have both small bias and small variance.

Example. Suppose X, ..., X, arei.i.d. Uniform(0,6), > 0. On p. 42 above we found the
method of moments estimator (MOME) to be & = 2X . On p. 46 we found the MLE to be
6= X(n)- Let us compare these two estimators w1th regard to their bias, variance, and MSE.
(a) Bias. MOME: E(f) = E(2X) = 2(0/2) = 6. So the MOME is unbiased, with bias = 0.
MLE: The pdf of T' = X, is (see p. 38) g(t) = nt"~1/0" for 0 < t < 6. So

E() = fogmtn—l /074t = (n/oM) fogtndt = (n/@“){t”+1 /(n+ 1)}:2'? =n0/(n+1).
The bias of the MLE is nf/(n + 1) — 8 = —6/(n + 1). So the MOME has less bias.

(b) Variance. MOME: Var(f) = Var(2X) = 4(62/12)/n = 62/(3n) .

MLE: Var(§) = E(T?) — (E(T))? = nf%/(n + 2) = [n8/(n+ 1)]* = nb?/[(n+1)*(n + 2)] .
The MLE has smaller variance for all n. >1.

(c) MSE. MOME: By the corollary above, MSE(0) = Var(9) = 62/(3n) .

MLE: By Theorem 7.3.1, MSE(6) = n6%/[(n + 1)%(n + )| +[—-0/(n+ 1)) =

20%/[(n +1)(n + 2)]. The two MSEs are equal when n =1 or 2, and the MLE has smaller
MSE when n > 3. So the MLE is a better estimator, according to the criterion of MSE (or of
RMSE). As noted above, RMSE is a more interpretable measure of performance than MSE.
For large n, the RMSE of the MLE is quite a bit smaller than the RMSE of the MOME,
because the ratio RMSE(#) /RMSE(f) = V(n+1)(n+2)/(6n) — oo as n — co. For

n = 20, the ratio is about 2, which tells us that the MOME tends to be about twice as far
from 6 as the MLE. A

Example. Suppose X1, ..., X,, are i.i.d. Normal(u, 02) and supposc we want to estimate o2,
The MOME (see p. 42) and the MLE (see p. 47) are both equal to 7° = Y (X; — X)%/n =
n 1.5'2 Let us compare the two estimators % and S2.

(a) Bias. We know S? is an unbiased estimator of ¢2.
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E(6?) = E(ﬂ;_l"l'Sz) = n—IO' so the bias of 3° is E;z—lcr2 — ot = —-o?/n.
So S? has less bias.
(b) Variance. We know (n — 1)52%/c? ~ X%n-—l)’ so S§% ~ LX(R 1), hence
2 a? \* 2 ot g
i —1 & —1 1
Var(6?) = Var(nTSz) - (nT) ar(S?) = (n )

It can be shown that 2 has smaller variance for all n > 2. (We do not consider n = 1

because then S? is not well-defined.)

(c) MSE. Since 57 is unbiased, MSE(S?) = Var(5?) = ~= 1

- 4 242 .
MSE(5%) = 2("n21)“ + (“’ ) B o iR dsmaliersforall 2 12,

n (]
because (2n —1)/n? < 2/(n — 1), because (2n — 1)(n — 1) = 2n? —3n+ 1 < 2n’.
So the MLE is a better estimator. By multiplying the sample variance by (n — 1)/n, we
introduce some bias, but this is compensated by a decrease in variance 6£5=.
For large n , the RMSEs of the two estimators are almost equal, because the ratio
RMSE(S?) /RMSE(6%) = +/2n2/(2n? —3n+1) » 1 as n — 00 For n = 20, the ratio is
1.04, which tells us that S? tends to be about 4% farther from ﬁ’ than 2. A

Example. Suppose X, ..., X,, are i.i.d. Normal(x, 6%) and suppose we want to estimate /..
Let us compare the two estimators X and X . We know X is unbiased, from which we
deduce that X has bias — 1u. We find that $X has smaller vanance Var(X) = 02 /n
and Var(3X) = 2/71 Now, MSE(X) = ¢?/n and MSE(—X) 2/n+( )t =
;}[(Jz/n + 4?). The MSE of X is smaller if and only if ¢2/n < ( 2/11 +p?), or

lul/o > +/3/n. I, for instance, u > ¢ and n > 3, then X has smaller MSE. Butif p =0
, then %7 has smaller MSE. Since we do not know the values of the parameters, we cannot
say which estimator has smaller MSE. A

Different people may choose different criteria for judging estimators. Some people prefer to
use unbiased estimators, even though a biased estimator may have smaller MSE. Other people
do not mind a little bias in an estimator if it allows smaller MSE.

Unbiased estimation

Unbiasedness is an appealing property. We might choose to restrict our attention to unbiased

estimators. Of course this will not be a good idea if no unbiased estimators exist.

Example. Suppose X ~ Binomial(n,f), 0 < 8 < 1 and suppose we want to estimate
7(0) = 1/6. Can we find an unbiased estimator? Suppose h(X) is unbiased for 1/6. Then



5

E[R(X)] = 37 oh(x)(  )05(1 ~ 6)"~% = 1/0 forall 0 < 0 < 1. But this is impossible,

because if we let § — 0, all the terms in the sum approach 0 except for the term for z = 0,
which approaches A(0), which is a finite number. However, 1/0 approaches co. A

If unbiased estimators exist for estimating 7(8) , which one should we use? It would be nice
if we could find one having the smallest variance. If 7™ is an unbiased estimator for 7(8)
and if Varg(7™) < Varg(T") for all unbiased estimators 7' and all parameter vectors 8, then

we say that T is a uniformly minimum variance unbiased estimator (UMVUE) of 7(0). It is

also sometimes called a best unbiased estimator.

Whereas an MLE almost always exists, a UMVUE exists only in certain situations. Before

“nvestigating-UNVVUES, Terus consider the related topic of W

est linear unbiased estimation

Suppose Xj , ..., X, areiid. withmean g and variance o2 and suppose we want to estimate
t¢ . Instead of considering all unbiased estimators of , let us restrict our attention even
further to linear unbiased estimators of the form T" = a; X; + --- + a,X,, where the
coefficients a, are nonrandom. If 7" is a linear unbiased estimator for p and if

Var(T™) < Var(T') for all linear unbiased estimators 7" and all values of y and o2, then we
say that T™ is a best linear unbiased estimator (BLUE) of u .

First, which linear uinbiased estimators are unbiased for p? If T is linear, then T" =
G,1X1 +---+ G,an and E(T) — E(a1X1 “+---+ anXﬂ) = alE(Xl) 4+ -+ G.nE(Xn) =

aipp+ -+ app = (a1 + --- + a,) . We see that the requirement to be unbiased for y is
that ai +---+a, = 1. Next, Var(T) Var(ale + - +aan) = ¥

Recall that ) (y; —y)? = Y y? — n¥?. Letting y; = a; and noting that § = @ = Za,;/n =
1/n, we find that 37a? = Y (a; — @)? + na? = 3 (a; — 1/n)? + 1/n. Therefore,

Y-a? > 1/n and the minimum value is attained when a, = 1/n forall i. The BLUE of p is
/)Xy +--+(1/n)X, = X.

In the derivation of the BLUE, note that we did not need to assume any particular distribution
for the population. We only assumed that it had a mean g and a variance o2, If X, s eeey Xn
are i.i.d. Normal(y, 0?), then the sample mean X is the MOME and the MLE of x. We will
see below that it is also the UMVUE of . To be able to say that X is the MLE or UMVUE
of 44, we must assume the distribution is Normal. If we drop the assumption of a Normal
distribution, we can still say that X is the MOME and BLUE of .

—_—
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Rao-Blackwellization

Next we will prove that a sufficient statistic is “sufficient” for minimum variance unbiased
estimation. Let X be a data vector with joint pmf or pdf f(z ;@) forsome 6 € O .

Theorem 7.4.1 (Rao-Blackwell Theorem). Suppose T'(X) is a sufficient statistic. Let
U(X) be an unbiased estimator of 7(6). Define the estimator W (T') = E(U | T") . Then
W (T') is an unbiased estimator of 7(6), and Varg(W) < Varg(U) for all 6.

The definition of W (T") may look strange at first sight. Let us review the concept of
conditional expectation in sections 3.2 and 3.3 in Mukhopadhyay's book. Let Y be a real-
valued random variable (such as U(X)) and let Z be a random vector (such as T'(X) ) and
suppose they have a joint pmf or pdf f(y, z). The conditional distribution of Y given

Z = z is described by the conditional pmf or pdf f(y|z) = f(v,2)/fz(z) .

As a function of y, with z fixed at any value for which fz(z) > 0, this is a valid pmf or

(0.0
pdf. Thatis, f(y|z) > 0 forall y and 3 f(y|z) =1 (or [ f(y|z)dy = 1). The mean of
ally =00

this distribution is called the conditional mean or conditional expectation,

B(Y]s) = S ufle) Cr T ufwlz)dy).
ally —0a

Note that E(Y|z) is a function of z. If h(z) is any real-valued function of z and we plug
in the random vector Z , then h(Z) isarandom variable. Thus E(Y|Z) is a real-valued

random variable. Note that its randomness is due to Z and not Y. In particular, in the Rao-
Blackwell Theorem, E(W|T") is a real-valued random variable in so far as it is a real-valued

function of the random vector T .

From Theorem 3.3.1 we know that E(Y') = E[E(Y|Z)] and
Var(Y') = E[Var(Y'| Z)] + Var[E(Y| Z)], provided that the expectations exist.

Proof of the Rao-Blackwell Theorem. First note that, since T" is sufficient for 8, then
Eg(U|T") does not depend on 6, and so W (T") is a valid statistic. To show that W is
unbiased, Eg(W) = Eg|E(U|T')] = E¢[Eg(U|T")] = E¢(U) , where the last equality is from
Theorem 3.3.1(i). Furthermore, Varg(W) = Varg[E(U|T")] = Varg[Ee(U|T')] <
Varg[Eg(U|T')] + E¢[Varg(U|T')] = Varg(U ), where the last equality is from Theorem
3.3.1(ii) and the inequality is due to the fact that Varg(U|T") > 0.0

It can be shown that the variance of W = E(U|T") is strictly smaller than that of W | i.e.,

Varg(W) < Varg(U), unless U is a function of the sufficient statistic T". If U is a function
of T',then W =U.
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Example. Suppose X;, ..., X, arei.i.d. Bernoulli(d), 0 < 6 < 1.

(a) Suppose we want to estimate 6 unbiasedly. We know T" = 3" X; is a sufficient statistic.
Let us find an unbiased estimator of @ that is a function of T'. To do this, we can use the
Rao-Blackwell Theorem. Actually, in this case, we would not need to bother with the Rao-
Blackwell Theorem, because we know Eg(T') = nf and so Eg¢(T/n) = 0, so the desired
estimatoris T'//n = X . But just to see how the theorem works, let us apply it to this problem.
If we take U = X, which is unbiased because E(X;) = ¢, then according to the theorem,
W = E(Xi|T) is a function of T that is unbiased for #. It remains to calculate E(Xi|T).
(This is called “Rao-Blackwellizing” X7 .)

The only possible values of the random variable X; are 0 and 1, whether its distribution is
unconditional or conditional. In particular, its conditional distribution is Bernoulli, and so
E(X1|T) = P{X; = 1|{T} . Now we calculate

P{X;=1 and T=t}

P{X;=1|T =t} =

P{T=t]
P{X1 =1 and Z?:2Xi:t*1}
- P{T=t}
P{X=1}P{d i, Xi=t—1}
- P{T=t} '

We know X ~ Bernoulli(¢), T ~ Binomial(n,6), and 5 I, X, ~ Binomal(n — 1,6) , so

PG=1}P{L, X;=t-1} _ 9(’;‘:11)9“(179)”*

F{TF-i] - (hea-e
n—1 (n—1)!
3 (tkl) I e T
(¢) t!(}?li_r,)z n

Thus we find that P{X; = 1|T} =T/n=X. A

(b) Suppose we want to estimate #* unbiasedly. Let us find an unbiased estimator of #° that
is a function of the sufficient statistic 7' = 3" X; . It is not obvious what function of 7" would
be suitable, and so the Rao-Blackwell Theorem will be useful here. All we need to do is find
any unbiased estimator of 6° and then we can Rao-Blackwellize it.

Take U = X, X, X3. Since the X;’s are independent, E(X1X,X3) =

E(X1)E(X2)E(X3) = 000 = 6°. The only possible values of I/ = X; X5X3 are 0 and 1,
so its distribution, whether conditional or unconditional, is Bernoulli, which implies that
E(X1X2X3|T) = P{X1X,X;3 = 1|T}. Now we calculate

P{X1X3X3=1 and T=t
P{X1 X X3 =1T =t} = {X1 QPET:t?n }
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P{X;=1, X;=1, X3=1 and Y1  X;=t—3}
P{T=t}

P{X1=1}P{Xo=1}P{X3=1}P{3" , X;=t—3}
P{T=1] :

We know X; ~ Bernoulli(¢) , T ~ Binomial(n,8), and > ,X; ~ Binomal(n — 3,6), so
P{X,=1}P{Xo=1}P{Xs=1}P{S", Xi=t3)
B{T=1]
93(?:“?)9&3(1_9)1;4
(?)gt(l_g)n—t

n—3 (n—3)!
(:—3) (t—3)1(n—t)! t(t—1)(t—2)

- (’:) — F(nn‘——t}l ~ n(n—-1)(n—-2) -

. T— —2 . ) .
Thus we obtain w as an unbiased estimator of #3 that is a function of the
n(n—1)(n—2)

sufficient statistic 7' = ) " X; . A

Example. Let X, ..., X, bei.id.Poisson(\), A > 0. Suppose we want to estimate e~
unbiasedly. This function of A is of interest because P{X, = 0} = e~*. The statistic

T = > X; is sufficient (see p. 35 above), and so it seems like a good idea to try to find an
estimator that is a function of 7. The MLE of A is A = X = T'/n, so a reasonable

=X X

estimator of e 1s e~

, which 1s a function of 1, but it is not unbiased. To find a function
of T that is unbiased for e‘)‘, we can Rao-Blackwellize.

First we need an unbiased estimator of ™. Since e~* can be expressed as the probability
P{X; = 0}, we can use the following fact. Suppose X is a random variable and A is an
event. Then Y = I{X € A} is a Bernoulli random variable and E(Y) = P{Y =1} =

P{X € A}. Therefore, letting U = I{X; = 0}, we have E(U) = P{X; = 0} = ™.

The desired estimator is W = E(U|T) = P{X; = 0|T'} . We can calculate

P{X;=0 and T=t}
P{T=t}
P{X,=0 and } 7}, X;=t}
P{ =t}

P{X,=0}P{} 7 , Xi=t}
P{T=t} :

P{X,=0|T =t} =

We know X, ~ Poisson(A), T ~ Poisson(n)) (see Exercise 4.2.2), and
> o, X; ~ Poisson((n — 1)), so

PIXI=0}P(YpXi=t} _ eTte (™ DA[(n—1)A)t/t
P{T=t} - e~ ()t /!
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= B -y

Thus we obtain W = (1 — %)T as an unbiased estimator of e~ that is a function of the
sufficient statistic 7" = 5" X .

It is interesting to compare this estimator with the MLE e‘y. They are very similar for large
sample sizes, because e~ X = (e ’l)y W =(1- - )nY [(1- %)”]X, and

lim (1 — —)” = e, (Recall from calculus that lim (1+ ) =g )Ly

n—oo n—oo

Next we look at a sample from a continuous distribution.

Example. Suppose Xi,...,X,, arei.i.d Normal(y, 1) and suppose we want to estimate
P{X; < c} = ®(c — p) unbiasedly, where c is a fixed known real number. We know X is
a sufficient statistic. Let us find an unbiased estimator of ®(c — ) that is a function of X .
Since ®(c — ) ig expressed as a probability, we can proceed as in the preceding example.
Let U = I{X; % ¢}. The desired estimator is obtained by Rao-Blackwellizing U to get
W =E(U|X) = P{X, # |X}.

To calculate this conditional probability, we can use section 3.6 on the Bivariate Normal
distribution. A useful lemma is:

Lemma. Suppose X,,..., X, areii.d. Normal(y,o?). Let V = a; X; + -+ + a,X,, and
W =0 X;+---+ b,X,,. Then (a) V has a Normal distribution, and (b) (V,W) hasa
Bivariate Normal distribution.

Proof. Part (a) can be shown using mgf’s as in section 4.3. The mgf of each X is (see
(2.3.16)) Mx,(t) = exp(tp + 5t?0%). The mgfof V is My (t) = Elexp(tV)] =
Elexp(t}_a: X;)] = Elexp(}_ta: X;)] = E[[Jexp(ta; X;)] = (by independence)
[TElexp(ta: X)) = [[Mx, (ta:) = [expl(ta)u + b(ta:)%0?) =

exp(2o[(tai)pu+ 5 (ta;)?o?]) = exp(t(Sa:)u + 1£2(3a2)o?], which is the mgf of the
Normal((3a:)p, (3a?)o?) distribution. For part (b), two ways to show that (V, W) has a
Bivariate Normal distribution are (1) to obtain the joint pdf f(v,w) and show it has the form
in (3.6.1), or (2) to show that every linear combination Y = ¢V + dW has a Normal
distribution and apply Definition 4.6.1. For this lemma, approach (2) is easier. Write
Y=clar Xy + -+ apXp) + d(b1 X1 +--- + Bakn) =

(car +dby) Xy + -+ 4 (can + db,) X,, . This is a linear combination of the X;’s and so part
(a) implies that it has a Normal distribution. [

Now we return to the example. Since X; and X are both linear combinations of the X’s,
the lemma implies that (X, X) has a Bivariate Normal distribution. Using the notation of
section 3.6, the parameters are p; = E(X;) =y, pp = E(X) =, 0y = SD(X;) = §,
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oy =SD(X) =1/ \/1_1, and p is the correlation coefficient between X; and X, that is,
p = Cov(X1,X)/o105 = (1/n)/(1/+/n) = 1/\/n. The conditional distribution of X,
given X = y is shown in Theorem 3.6.1(ii) to be Normal with mean 1 + (po1/03)(y — pa)
=y and variance o{(1 — p®) =1 — 1/n. Therefore, P{X; < ¢[X =y} =
®((c —y)/+/1—1/n). Thus, an unbiased estimator of P{X; <c} =®(c—p) thatisa
c—X ) A

1_;.

function of X is given by ‘I)(

The Cramér-Rao lower bound

An approach that sometimes works for finding a UMVUE is to use the Cramér-Rao lower
bound. This bound requires some “regularity conditions” on the joint pmf or pdf of the data
vector. We will suppose € is real-valued and will assume the same three regularity conditions

that were assumed for the definition of Fisher information (see p. 21). For easy reference, the
conditions are:

(RC1) f(x;6) has the same support for all 4.
(RC2) f(z;0) is differentiable with respect to 0.

(RC3) For all statistics W (X') whose expectation Eg(W) exists, the expectation is a
differentiable function of # and the derivative can be calculated by differentiating

under the summation or integral sign.

Recall that these conditions are satisfied in a one-parameter exponential family if the functions
b;(6) are differentiable.

Theorem 7.5.1 (Cramér-Rao Lower Bound). Let X be a data vector with Jjoint pmf or pdf
f(=; 0) parameterized by a real-valued parameter . Suppose conditions RC1, RC2, and RC3
are satisfied. If U(X) is unbiased for 7(), then

(@)

Ix(9)
The Cramér-Rao Lower Bound (CRLB) can be used to find a UMVUE of 7(6) , because if an
unbiased estimator has a variance that achieves the CRLB, then of course it has the smallest
possible variance. Note that the theorem does not assume an i.i.d. sample. It can be applied to

regression data or time series data, provided, of course, that the regularity conditions are
satisfied.

Varg(U) > for all 4.

Proof of the CRLB. For any two random variables Y and Z, the Covariance Inequality
(Theorem 3.9.6) says that [Cov(Y', Z)]? < Var(Y))Var(Z), which can be rewritten as
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[Cov(Y,Z) [2

Var(Y) = S5

This yields the CRLB by taking ¥ = U(X) and Z = —log f(X;0). By the definition of

information (p. 21 above), Var(Z) = Zx(6). It remains to show that
Covg [U(X), 2 1og f(X; 9)] — 4.0).
Since Eg [%log f(X; 9)] = 0 (by part (b) of the lemma on p. 22), so
Cove U (X). Zylog £(X;6)| = Eo[U(X)log 1(X;6)] = ZEalU(X)] (by part () of
the lemma on p. 22). Since U(X) is unbiased, Eo[U (X)| = 7(6) .0

Example. Let X,..., X, beiid. Poisson(A), A > 0. This family of distributions is a
regular one-parameter exponential family and so conditions RC1, RC2, and RC3 hold. The

pmf of a single observation is f(x; A) = e"*\%/z!, so

log f(z;A) = — A+ zlogh —logx!
D fld) = =142 ad Sloxfled) = — <
\ g ) - hY a2 0g ’ - A2 -
By the lemma on p. 23, the information in X, is Zx,(0) = — E,\(— A—zl) = % = %

By Theorem 6.4.1, the information in X is Zx(0) = nZx,(0) =

(a) We can now calculate the CRLB for the variance of any unbiased estimator of A. Since

d yA = 1, Theorem 7.5.1 implies that the CRLB is 1/ ( = 2 . For the Poisson

dlstrlbutlon, E(X1) = A and Var(X;) = A, and so E(X) = A and Var(X) = 2. Thus w
see that X is an unbiased estimator of A and it achieves the CRLB. It must therefore be a
UMVUE of X.

(b) Let us calculate the CRLB for the variance of any unbiased estimator of e . Since
are = — e, the CRLBis (— ¢™*)2/(%) = 2¢-2A. Onp. 56 above we found an
unbiased estimator of e that is a function of the minimal sufficient statistic 7 = > X,
namely the estimator W = (1 — %)T We suspect that W is a good estimator since it is a
function of a minimal sufficient statistic, and so it seems quite possible that Var(W) achieves

the CRLB. We can calculate Var(W) = E(W?) — (E(W))? = E(W2) — e2* and

B = B[ - 177] = § [ - L]

- e‘”’\go (- %)2(11)\)] Jt

A=A _ -22+d
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Hence

A A
Var(W) = e 2Mn — 2% = e2A(en —1).

A
This is greater than the CRLB, because en — 1 > -vi— , because e —1 > v forall u >0,

because e* =1+ u+ zu® + Lud +--- > 14 u when u > 0.So W does not achieve the
CRLB. Nevertheless, as we will see later, W is the UMVUE of e~*. If an unbiased
estimator achieves the CRLB, then it is a UMVUE. The converse is not true. That is, a
UMVUE does not necessarily achieve the CRLB. A

Next we consider an example in which the data are i.i.d.

Example. Suppose Y1,...,Y, are independent with ¥; ~ Normal(a + Suw; ,02), where w;
is a known covariate. This is a simple regression model. Suppose we want to estimate B.
The Cramér-Rao lower bound can be generalized to families of distributions with vector-
valued parameters, but to stay within the scope of Theorem 7.5.1, let us suppose that « is
known tobe 0 and o is known tobe of . That is, ¥; ~ Normal(Buw; ,02). The joint pdf of
the data vector Y is

@0 = [lfivsB) = :

1=1

> €Xp [ == 5(1;"3‘ (v — ﬁwi)2]

1 21&70

-

= () "] - g2 -]
1

99

)nexp[ .- 2_15 (Ey? ~ 26> wiy; + ﬁQZw?)J

B ( 2%03

= a(B)h(y)exp[b(B)R(y)]
where a(8) = ( \/;T?)"exp( - 37850t k() = exp( - 207242 . b(B) = %

and R(y) = > w;y;. This is a regular one-parameter exponential family, so conditions RC]1,
RC2, and RC3 are met. We also note that Y w;Y; is a minimal sufficient statistic.

log f(yi ) = —nlogy/2maf — 5oz (o — 28X wigi + B wf)
%Ing(y;ﬁ) = O%gzwiyi— %ZW?

iz_l s = 1 2
352 og f(y;8) = — ;’gzwi-
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Now

Ix(B) = —Eﬁ[aa—;zlogf(y;ﬁ)] = Lyl

Oy

The CRLB for the variance of unbiased estimators of 3 is 1/Zx(8) = o3 /> w?.
Perhaps if we find an unbiased estimator of [ that is a function of the minimal sufficient
statistic Y w;Y;, maybe it will achieve the CRLB and can thus be shown to be a UMVUE.

EQ wY;) = SwEY) = Swi(Bwi) = B w?.
Therefore, W = Y w,Y¥;/> w? is an unbiased estimator of /3 that is a function of the
minimal sufficient statistic.

— (Z—;mzw?Vm(K) = z—lwgcrg = CRLB.

1

We can conclude that > w;Y;/> w? isa UMVUE of 3. A

The I.ehmann-Scheffé Theorem

In examples in which the CRLB can be used to find a UMVUE, it is often easier to find the
UMVUE by using the theorem of Lehmann and Scheffé that will be presented next.
Moreover, the theorem works for some examples in which the CRLB is not attained. The

theorem is stated for models with vector-valued parameters.

Theorem 7.5.3 (Lehmann-Scheffé Theorem). Suppose T'(X) is a complete sufficient
statistic. Suppose W (T") is an estimator that is a function of 7" and is unbiased for 7(€) .
Then W(T') is the UMVUE of 7(8).

Proof. Let U(X) be any unbiased estimator of 7(€) . We must show that

Varg[W(T")] < Varg[U (X)) for all 8. By the Rao-Blackwell Theorem, the estimator

U*(T) = E(U|T) is unbiased for 7(@) and satisfies Varg[U*(T")] < Varg[U (X)] for all 6.
Since U*(T') and W (T") both have the same expectation, then Eo[U*(T") — W(T')] =0 for
all 8. By the definition of completeness, U*(T') — W (T') = 0 (with probability 1); that is,
U*(T) = W(T) (with probability 1). Therefore, Varg[W (T")] = Vars[U*(T")]

< Varg|U(X))] forall 6.0

From the proof of the theorem, we see that the UMVUE is unique (with probability 1). This is
true even when no complete sufficient statistic exists.

Corollary. Suppose T'(X) is a complete sufficient statistic. If U(X) is unbiased for (),
then E(U|T) is the UMVUE of 7(8).
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Example. Suppose Xj,..., X, areiid.Poisson(\), A >0. A complete sufficient statistic
is T = > X; (see p. 35 above or use Theorem 6.6.2).

(a) The sample mean X is unbiased for the population mean \. Since X = T/nisa
function of T, the Lehmann-Scheffé Theorem implies that it is the UMVUE of ).

(b) On pp. 56-57 above we used the Rao-Blackwell Theorem to obtain (1-— %)T as an

unbiased estimator of e™*. Since it is a function of T, it is the UMVUE of e=* A

Example. Suppose X,..., X,, arei.id. Bernoulli(f), 0 < @ < 1. A complete sufficient
statistic is T' = ) X; (use Theorem 6.6.2).

(a) The sample mean X is unbiased for the population mean 6. Since X = T'/n is a
function of T, the Lehmann-Scheffé Theorem implies that it is the UMVUE of 6.

(b) On pp. 55-56 above we used the Rao-Blackwell Theorem to obtain z—g;ll))((n%zz)) as an

unbiased estimator of 6. Since it is a function of T, it is the UMVUE of 63. A

Example. Suppose X, ..., X, arei.id. Normal(u,02), — 00 < p < 00, 02 > 0.,
A complete sufficient statistic is 7" = (X, §2) (see p. 37 above).

(a) Since X is unbiased for p and is a function of T, it is the UMVUE of 4.

(b) Since S? is unbiased for ¢ and is a function of T, it is the UMVUE of 2.

(c) Similarly, oS, where a = /3 (n — 1) T'(3(n — 1))/T'(1n) is the UMVUE of o. A

Example. Suppose Yi,...,Y, areiid. Normal(fuw;, of), — 00 < f3< c0. Onp. 60 above
we saw that this family of distributions is a regular 1-parameter exponential family. By using
a theorem on p. 36, one can show that 3 u;Y; is a complete sufficient statistic. On p- 61 we
found that ) Jw;Y;/> w? is an unbiased estimator of . Now the Lehmann-Scheffé Theorem
implies that it is the UMVUE of 8. A

Unbiased estimation when no complete sufficient statisticg exists

In the examples of unbiased estimators presented from p. 52 to this page, there has been a
complete sufficient statistic. Now we consider an example in which no complete sufficient
statistic exists.

Example. Suppose X;,..., X, areii.d. Normal(6,6?), # > 0. A minimal sufficient statistic
is (X, S?) but it is not complete (sce Exercise 6.6.3). The estimator X is unbiased for § and
is a function of the minimal sufficient statistic. Another unbijased estimator of @ thatis a
function of the minimal sufficient statistic is oS where a = 4/ s(n = 1)L (n—1))/T(3n).
Which estimator is preferable? Their variances are: Var(X) = §2 /n and

Var(a$) = (a® — 1)6%. One can show that Var(X) < Var(aS) for n = 2, and
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Var(aS) < Var(X) for n > 3. For large n, it can be shown that a? — 1 = 1/(2n), so that
Var(aS) =~ 3Var(X). So aS is preferable for most sample sizes. An even better estimator
can be obtained by using the idea of a BLUE. Among all unbiased linear combinations of X
and aS, let us find the one with the smallest variance. Let U; = X, U, = a§, and

U = ciU; + cU,. For U to be unbiased, we want E(U) = ¢ E(U;) + E(Us) =

18 + c20 = (c1 + ¢9)0 = 0; that is, we need ¢; + cp = 1. So consider
U=cX+(1-c)aS. Since X and S are independent, Var(U) =

c?Var(X) + (1 — ¢)?Var(aS) = c20%/n + (1 — ¢)%(a? — 1)8? =

[¢*/n+ (1 —c)?*(a® — 1)]6? = g(c)#%. We want to minimize g(c). Its derivative is

d(c) =2¢/n—2(1 -c)(a® — 1) = 2(1/n + a® — 1)c — 2(a® — 1), which is 0 when
c=c*=(a®>—1)/(1/n+ a? — 1). This is a minimum because, as ¢ — =+ 00,

Var(U) — oo. An unbiased estimator that has smaller variance than either X or aS is
c¢*X + (1 — ¢*)aS. For large n, this is approximately 3X + 2aS. Its variance is
approximately 62/(3n). A

Example. Suppose X;,..., X, arei.i.d. Uniform(6,60 + 1), — oo < 8 < co. A minimal
sufficient stzttl‘gc is (X(), X(n)) (use Theorem 6.3.1) but it is not complete (because

E[X(n — X (1)']\’@ 0). There are several unbiased estimators of ¢ that are functions of the
minimal sufficient statistic. The pdf of W = Xy is hA(w) = n(0 +1 —w)"! for

0 <w<@+1 (42.6),and the pdf of ¥ = X,y is g(y) =n(y—6)" for 6 <y <0+ 1
(4.2.4). Hence, E(W) = f{ ™ wh(w)dw = 0 + 1/(n + 1), and E(Y) = [ yg(y)dy =

0 +n/(n+ 1). Therefore, T} = X3y — 1/(n+1) and Ty = X(») — n/(n + 1) are both
unbiased for 6. Since a Uniform distribution is symmetric, Var[X )] = Var[X(,], and so
Var(Ty) = Var(Zy) = Var(Y' - 6) = E[(Y — 0)?] - [n/(n+ ) = n/[(n + 1)2(n +2)].
Using the idea of a BLUE as in the preceding example, let us see if we can find a linear
combination of the two estimators that has smaller variance. Let T = ¢;7} + ¢T3 . For T to
be unbiased, we need ¢; + ¢y = 1, and so we can write 1" = ¢T} + (1 — ¢)T3 . Its variance is
Var(T') = c*Var(Ty) + (1 — ¢)*Var(T3) + 2¢(1 — ¢)Cov(Ty,Ty) . The derivative of the
variance with respect to ¢ is 2cVar(7)) — 2(1 — ¢)Var(13) + 2(1 — 2¢)Cov(T1,T3) , which
is 0 when ¢ = ¢* = [Var(Z3) — Cov(T3,T3)]/[Var(T1) + Var(Tz) — 2Cov(Ty, T3)] =
[Var(T}) — Cov(T1, T3)]/ [2Var(Ti) — 2Cov(T1,T3)] = 5. This is a minimum because, as

¢ — * oo, Var(T) — oo. An unbiased estimator of § with smaller variance than either T3
or Ty is T* = §(Ty + Ta) = M — § where M = }[X(1)+ X(y)] is the midrange. A



