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Properties of probability

To achieve a mathematical formulation of the properties of probability, we start with a sample
space S. Weregard S as the set of all possible outcomes of an experiment. For an
experiment in which a coin is tossed once, we can let S = {H, T} . For an experiment in
which a coin is tossed twice, we can let S = {HH,HT,TH,TT}. In assigning probabilities
to the possible outcomes of the experiment, certain axioms should be satisfied.

Finite sample spaces

Suppose S has only a finite number of elements; that is, suppose the experiment has only a
finite number of possible outcomes. Write S ={s1,82,...,8n}. Let P(s;) denote the
probability assigned to s, that is, the probability that the experiment will result in outcome s;.
An assignment of probabilities to the outcomes should satisfy the following two requirements.

(NLD (@ 0<P(s) <1 for all =150
N
(b) Z:l P(S,‘) =1,
1=
(Given requirement (b), we could omit < 17 from requirement (a).)
A subset of S is called an event. Events of interest often have concise descriptions. For
example, in the sample space S = {HH,HT,TH, TT} for tossing a coin twice, the event

A = {HH,TH} can be described as the event of getting a head on the second toss. The
probability of an event is given by the sum of the probabilities of its elements.

Definition N.1.2. For anevent A ina finite or countably infinite sample space,

P(A) = TP(s).

scA

Probabilities of events satisfy the following three basic properties (see Definition CB.1 2.2).
These properties are called the Axioms of Probability.

(N.13) (a) P(A) >0 forallevents A

®) P(S)=1.
(c) If A and B are disjoint events, then P(AU B) =P(A) +P(B).

... By mathematical induction, property ¢ implies

(d) If Ay, A42,..., A, are pairwise disjoint events,
then P(AjUAU--- U Ap) = P(Ay) +P(Ag) + - +P(Axk).
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Everyone seems to accept the axioms for finite sample spaces as being perfectly sensible. But
for infinite sample spaces there is some disagreement about what the axioms should be.

Countably infinite sample spaces

Suppose the number of elements in the sample space S is countably infinite. For example,
consider an experiment in which a vial of water is selected from a lake and the number of
microorganisms of a certain type are counted. One could figure out an upper bound on what
this number could be (e.g., the estimated number of atoms in the universe), but it is convenient
to let the sample space be all nonnegative integers, S = {0,1,2,...}. In general write

S ={s1,82,93,...}. Anassignment of probabilities to the outcomes should satisfy the
following two requirements.

(N.14) (@ O0<P(s;)<1 foralli=1,2,3,....
(b) 'Z%P(S;)-:l.
i=1

As with finite sample spaces, the term “event” simply means a subset of S’ and the probability
of an event A is given by Definition N.1.2.

Probabilities of events in a countably infinite sample space satisfy the Axioms of Probability
(N.1.3)(a, b, c, d) and also satisfy (see Definition CB.1.2.2(3)):

(s8] o0
(N.L.5) If Ay, As,As,... are pairwise disjoint events, then P({J A:) = > P(4:) .
=1 i=1

Property (N.1.3)(d), or equivalently property (N.1.3)(c), is called the Axiom of Finite
Additivity. Property (N.1.5) is called the Axiom of Countable Additivity and is a stronger
property in the sense that countable additivity implies finite additivity but not vice versa.

The properties of probability in countably infinite sample spaces are a straightforward extension
of the properties in finite sample spaces. But the extension to uncountably infinite sample
spaces is not so straightforward.

Uncountably infinite sample spaces

Suppose the number of elements in the sample space S is uncountably infinite. For example,
consider an experiment in which a fish is selected from a lake and its length is measured. The
length could be any value in an interval of possible values, say from 1 centimeter to 100
centimeters. The sample space S = [1,100] contains an uncountably infinite number of
elements. (In a case like this it is often convenient not to worry about lower and upper bounds
and to let the sample space be S = (0,00) or § = (-0, 0).)



.

(,— In finite and countably infinite sample spaces it is sufficient to assign probabilities to the

individual outcomes, making sure that the requirements (N.1.1) or (N.1.4) are satisfied, and
then the probability of any event is determined as the sum of the probabilities of the outcomes it
contains. This doesn't work for uncountably infinite sample spaces. In fact, in many cases the
probability of every individual outcome is 0. For example, the uniform distribution on (0, 1)
assigns probability P(z) = 0 to each individual z € (0,1) and assigns probability
P((0,1)) = 1 to the whole interval. Somehow the individual 0’s add up to 1. Infinity is a
very useful mathematical concept but it sometimes leads to strange unintuitive results.

— T

So in an uncountably infinite sample space we must assign probabilities to events in some other
way. Typically we use probability density functions (pdf's). We will review pdf's later.
Probabilities defined in this way still satisfy the Axioms of Probability (N.1.3) and (N.1.5),
provided we restrict the assignment of probabilities to a special collection of subsets of S. The
subsets to which probabilities are assigned are called events. Strangely, in an uncountably
infinite sample space, not all subsets of the sample space can be events. If we try to assign
probabilities to all subsets of S, the Axioms cannot hold.

In an interval of real numbers, the events are all subintervals and sets that can be constructed

from subintervals by taking countable unions, countable intersections, and complements.
Consequences of the axioms
From the Axioms of Probability many other properties can be derived.
Lemma N.1.6 (see C&B §1.2.2).

(@) P(¢) =0 where ¢ is the empty set.

(b) P(A9)=1-P(4).

() P(A)<1.

(d) If Ac B,then P(4) CP(B).

(&) P(AUB)=P(A)+P(B)— P(ANB).

() P(AUB)<P(A)+P(B).

() P(ANB)>P(4)+P(B)—1.

(h) P(A;U---UAg) SP(A1) +-- +P(Ax).

() P(A;N--NAL)2P(A)++P(A)—(E=1).

j Parts (g) and (i) are called the Bonferroni Inequality.
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Application. Suppose (L;,U;) is a 95% confidence interval for a parameter 6; and (Lo, Us)
is a 95% confidence interval for a parameter 6, . This means that P{L; < 6, < U} = 0.95
and P{Ly < 0, < Uy} = 0.95. By the Bonferroni Inequality (part (g)), P{L; < 6; < U; and
Ly <8, <U} >0.954+0.95—1=0.90. Thus we can say that we have at least 90%
confidence that both intervals contain the true values of their respective parameters. We call
the two intervals 90% simultaneous confidence intervals.

Finite sample spaces with equally likely outcomes

There are situations in which all the outcomes in the sample space have the same probability of
occurring. When we toss a fair coin, each of the two sides has probability 1/2 of being the
side facing up. When we roll a balanced die, each of the six sides has probability 1/6 of being
the side facing up. When we draw a card at random from a 52-card deck, each card has
probability 1/52 of being drawn. '

Write S = {81,3%2,...,85}. Suppose P(s;) = 1/N for all i=1,2,...,N.

For any event A C S, . H A
. N A G
P(4) = TR(s) = Ty = Heageid vt g
s€A s€A ) ‘f/_#—* HE

Therefore calculation of a probability is a matter of counting the number of elements in a set.

Theorem CB.1.2.4 (Fundamental Theorem of Counting). If'a job consists of k separate tasks
and the i-th task can be done in n; ways (¢ =1,..., k), then the entire job can be done in

MiNg* N WAays.

Lemma N,1.7. Consider a set having n elements.

(a) The number of subsets of the set that have k elements is (;:) e #lk)'
n(n—1)(n—2)---(n—k+2)(n—k+1)
MDD @

(b) The number of sequences of distinct elements from the set that have length & is

1
an-1n-2)n—k+2)n—-k+1)= # .
(c) The number of sequences of elements, not necessarily distinct, from the set that have
length k is n*.

Conditional;probability and independence

 Definition CB.1.3.1. The conditional probability of A-given B is P(A|B) =tan2d
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. Conditional probability and ind_enenidence

Definition CB.1.3.1. The conditional probability of A given B is P(A|B) = %2 .

__________—.....-——’——‘———

To interpret P(A) we can image repeating the experiment an infinite number of times and
observing the sequence of outcomes. Then P(A) would be the proportion of observed
outcomes that arein A. The conditional probability P(A|B) would be the proportion of
observed outcomes that are in A if we restrict our attention only to outcomes that are in B.

If someone performs the experiment but we aren't told anything about the outcome, our degree
of belief that the outcome is in A is P(A). If someone tells us that the outcome is in B, our
degree of belief that the outcome isin A is P(A|B).

For a fixed event B, the conditional probahilities P(A|B) satisfy the Axioms of Probability
(Definition CB.1.2.2). So conditional probabilities can be regarded as probabilities in their own
right. In particular, they satisfy all the properties of probability. For example,

P(A°|B) = 1 —P(A|B) and P(A; U Aq|B) =P(44|B) +P(A|B) — P(A1 N Ag|B).

From the definition we see that if we know the values of P(B) and P(A N B), then we can
take the ratio and get P(A|B). Also note that if we know the values of P(B) and P(A|B),
. then we can get P(AN B) as

™) P(ANB) = P(B)P(A|B).

Similarly, if we know the values of P(A) and P(B|A), then we can get P(ANB) as
(N.1.8) P(ANB) = P(A)P(B|A).

From (*) and (N.1.8) we see that P(B)P(A|B) = P(A)P(B|A) and hence:

Theorem N.1.9 (Bayes” Theorem). P(A|B) = P(B|A)§%%))- )
Bayes’ Theorem allows us to calculate P(A|B) if we know the values of P(B|A), P(A) and
P(B). For finding the value of P(B), the following theorem can be useful.

Theorem N.1,10 (Theorem of Total Probability). Suppose S is partitioned as
S = A, U---U Ay where the A; are pairwise disjoint. Then

P(B) = P(A1)P(BlA1) + -+ +P(Ax)P(B|4k).

Combining the two theorems, we see:

Corollary N.1,11 (Bayes' Rule, C&B p. 21). Suppose S is partitioned as S =AU UA
. where the A; are pairwise disjoint. Then



o

P(4;)P(B|A
P(A41|B) = P(Al)P(B[A(l)1—!)---(-+IP(1})17=)P(B|A1=) '

Note that for the case k¥ = 2, Theorem N.1.10 says P(B) = P(A)P(B|A) + P(A°)P(B|A°)
P(A)P(B|A
and CorollaryN 1.11 says P(A|B) = A P(B|(A))+E°(Jl°))P(B|A°) :
A\
De:ﬁnition|lJ Events A and B are independent if P(A|B) = P(A).

Thus, when the event A is independent of the event B, if someone performs the experiment
and tells us that the outcome isin B, our degree of belief that the outcome is in A is still
P(A), the same as if we didn't know about B.

There are several equivalent ways to define independence. Using the definition of conditional
probability, one can show that: ‘
13 '
LemmaN.1.}1Z. P(A|B) =P(A) iff P(ANB)=P(A)P(B) iff P(B|A) =P(B) iff
P(A|B) =P(A|B°) iff P(B|A) =P(B|A®).

The second condition in the lemma is the definition of independence in the textbook (Definition

CB.1.32). _

ot S
Definition. Events Ay,..., Ax are mutually independent if, giverTany one of these events, A;
and any collection of the other events, A; ,. A,-,; 1<m<k-1),thea the 2l
P(A;| Aj N---NA;) = P(A:) Lkt
This is equxvalent to Deﬂmtlon CB.1.3.3, which says that, giﬁgn any collection of these events,
AL g s (1= k), -t-heﬂ— A, N---NA; ) =P(A,'l)---P(A,‘m) AL

Random variables

The concept of a random variable can be regarded as equivalent to the concept of probability
for sets of real numbers. So there is the same sort of vagueness about what a random variable
“really is” that there is about what probability “really is”. Roughly speaking, a random variable
is a real number that has been randomly generated.

Let X be a random variable. Since it is randomly generated, its behavior must be described in
terms of probability. The probability distribution (or simply distribution) of X is a
specification of the probabilities P(X € A) for all events A in the real line (- oo, c0)

(that is, sets of real numbers that can be constructed by taking finite or countably infinite
unions, intersections and complements of intervals — see Example CB.1.2.2). Of course these
probabilities must be specified in such a way as to satisfy the three Axioms of Probability:

1. P(X € A)>0 forallevents A.
2. P(Xe€(-00,00))=1.

}

)
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[o ] o0
3. If Ay, Ag,... are pairwise disjoint events, then P(UA:) = 2 P(4).
1=1 i=1

A random variable X is called discrete (and its distribution is called discrete) if there is a finite
or countably infinite set C' such that P(X € C) = 1. Examples of some common discrete
distributions may be found in C&B on pp. 624-625. For the Binomial distribution we can take
¢ ={0,1,...,n}. For the Poisson distribution we can take C = {0,1,2,...}.

A random variable X is called continuous (and its distribution is called continuous) if
P(X = z) = 0 for all real numbers z . Examples of some common continuous distributions
may be found in C&B on pp. 626-629.

By definition, the distribution of a random variable X consists of the values of P(X € A) for
all events A. But to specify all these probabilities it is not necessary to specify them all
explicitly.

Probability mass and density functions

¢ (See Definition CB.1.6.1 and Theorem CB.1.6.1). For a discrete distribution, it suffices to
give its probability mass function (pmf),

fx(z) = P(X =z) forall z € (- o00,00)

(or for all z € C with the understanding that P(X = =) = 0 forall = ¢ C). Given the pmf,
the distribution of X is determined by P(X € A) =3 fx(z).
xeA

For Axiom 1 to hold we need (a) fx(z) >0 forall .
For Axiom 2 to hold we need (b) ) fx(z) =1.

zeC
Axiom 3 automatically follows from the properties of summation.

In order for a function f(z) to be a valid pmf, it is necessary and sufficient for it to satisfy
conditions (a) and (b) (with f(z) =0 forall z ¢ C).

Example. Suppose X ~ Binomial(n,p) . See pp. 624 and 89-92 in C&B.

This is a discrete random variable with pmf f(z) = (2) p*(1—-p)** forz=0,1,...,m.
The number 7 is a nonnegative integerand 0 < p < 1.

Let's verify that f(z) satisfies properties (a) and (b) for a pmf. It is easy to see that f(z) >0
for all z. For (b) we can use the Binomial Theorem (Theorem CB.3.1.1):

(a+d)" =2 (’;;)akb”"c . Applyitwith a =p and b = 1 — p, noting that

p+A-p)r=1"=1|
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‘ ¢ (See Definition CB.1.6.2 and Theorem CB. 1.6.1). For a continuous distribution, it usually
(see below) suffices to give its probability density function (pdf), say fx(z). Given the pdf,

the distribution of X is determined by P(X € A) = f fx(z)dz .
For Axiom 1 to hold we need (a) fx(:c) >0 forall z.
For Axiom 2 to hold we need (b) f fx(z)dz =1.

Axiom 3 automatically follows from the properties of integration.
In order for a function f(z) to be avalid pdf; it is necessary and sufficient for it to satisfy
conditions (a) and (b).

Example. Suppose X ~ Normal(y,o ?). See pp. 628 and 103-107 i m C&B.
This is a continuous random variable with pdf f(z) = 7——- e 20E for —oo <z < 00.
The parametcr 4 may be any real number and o may be any positive number.
Let's verify that f(z) satisfies properties (a) and (b) for a pdf. It is easy to see that f(z) > 0
for all m Verifying (b) is not so easy.

s fe .= 2

_‘!; Jlejea ___‘£ ;:’271'02 ;;211'0'

t Now change the variable of integration from = to z = (z — p)/o. Notethat z =0z +pu
and dz = odz. Hence the integral equals

27rcr2

fe 2crdz—7=-fe 2dz

Y

Note that the integrand e 2
integral over the negative half of the real line is equal to the integral over the positive half of the
real line. Therefore

00 9 oo_ﬁ
_if@)d:::m Ofe 7dz.

Change the variable of integration from 2z to w = 2% /2. Note that z = /2w and
| :
dz = Edw. Hence the integral equals

is symmetric about 0, because 2% is symmetric about 0. So the

[s. ] o0
2 e’ R | e’v
T d o= = [ E
This integral still looks difficult. But it is a well-known integral; it is an instance of the gamma

function:
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o0

T(a) = [ttetde,

0
s :
which is vﬁl:deﬂned forall a > 0. See C&B p. 100. When a = n is a positive integer, then <
I'(n)=(n—1)!. Fora= %, I‘(%) = ﬁ But for most values of a, the integral must be
calculated numerically. Note that e™¥/,/w = wi~le™*  and so we have

Ji@e = 2T} = JmVm =11

A distribution is called absolutely continuous if it has a pdf. Almost all continuous distributions
are absolutely continuous but there are a few strange exceptions. All the distributions that we
will deal with are absolutely continuous and so it will be convenient for us to use the word

“continuous” to mean “absolutely continuous”.
Cumulative distribution functions

Another way to specify a distribution of a random variable X, besides giving its pmf or pdf, is
to give its cumulative distribution function (cdf),

Fx(z) =P(X <z) forall z € (-00,00).

For the Axioms of Probability to hold we require that (a) Fx(z) — 0 as £ — — oo and
Fx(z) — 1 as z — oo, (b) Fx(z) is a nondecreasing function, and (c) Fx(z) is right-
continuous. In order for a function F(z) to be a valid cdf, it is necessary and sufficient for it
to satisfy conditions (a), (b) and (c).

For a discrete distribution, the pmf can be obtained from the cdf as fx(z) =
Fx(z) — Fx(z — €) for a sufficiently small positive value of €.

For a continuous distribution, the pdf can be obtained from the cdfas fx(z) = &Fx (z).
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CHAPTER 2 — Expectations and transformations

Expected values
Definition CB.2.2.1. (a) The expected value (or expectation or mean) of a function g(X) ofa

discrete random variable is
E[g(X)] = 2 9(z)fx(z)
rze X

where X is a set such that P(X € X') = 1. The sum always exists if A" is finite or if g(x) is
bounded, but if X is countably infinite and g(z) is unbounded, then the sum may not exist, in
which case the expected value does not exist.

(b) The expected value of a function g(X) of a continuous random variable is

E[g(X)] = f g(z)fx(z)dz .

The integral always exists if g(z) is bounded, but if g(z) is unbounded, then the integral may
not exist, in which case the expected value does not exist.

Example. Suppose X ~ Cauchy(0,1). See pp. 626 and 109-110. Its mean E(X) does not
exist — see Example CB.2.2.3. ||

Exampl Suppose X ~ Binomial(n, p). Let's calculate its mean.
E(X) = zxfx(x) Le(3)ra o —zx( )P -p)=.

Recallthat ( ) = F(??L::'j? Hence :J:(n) - m = (:———i) -

Now we have E(X) = ( )pz(1 P = npz( ) ~1(1 = pY

_ | z=1
=npy, (?)p”(l —p)™ ¥ where m=n—1 and y =z — 1. Note that
y=0

(?)p’l(l — p)™ ¥ is the pmf of the Binomial(m , p) distribution on {0,1,...,m}, and so
> (m)py(l —p)™ ¥ = 1. Therefore, E(X) =np-1=np. ||
y=o\ Y

Example. Suppose X~ Normal (1,0%). Let's calculate its mean

!::—;22 !x—%!
E(X) __o[xfx(x)dx —IIV—— %! i = 21r02f:re 20t dz,

Again it helps to change the variable of integration from z to z = (z — p)/o. This yields

1 2 g . >
E(X):mf(az—l—p)e Zgds = m_f(az+,u)e 2dz
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T 1 .2
=075=;_‘0£ze 2dz -I-,u%?_ie .2 dz

=g . A+ pB |, where A = j?ze_%z—dz and B = j? L e_édz
= oA+, = JgmeTe

22
Note that 712=7r e~ 2 is the pdf of the Normal(0, 1) distribution, and so B = 1. Note that the
2
integrand h(z) = ze” 2 in A is an odd function, i.e., it satisfies h( - 2) = — h(2) for all

o0 0 0 oo
z > 0. For an odd function, f'h(z)dz = fh(z)dz + fh(z)dz = — fh(z)dz
: ~00 -0 0 0

< ry 2 ol P
+fh(z)dz,which is 0 provided that fh(z)dz exists. Now fze__fdz: [me_'i"]ﬁ;go
0 0 0

= —-0+4+1=1< 0. Hence A =0 and E(X):J—E *0+p-1=p. The symbol u

is commonly used to denote the mean of a distribution. We have shown that the parameter
in the Normal(y , 0?) disﬁbution is consistent with this common usage. ||

Some useful properties of expectation are listed in the following lemma.

Lemma N.2.1 (see Theorem CB.2.2.1). Let X be a random variable, ¢ a constant, and g(X)
and A(X) functions of X whose expectatiens exist.

(8) Efc)= e,

() E(X+c¢) = E(X)+c.

(© E(cX) = cE(X).

@ Elg(X)+h(X)] = Elg(X)] +E[r(X)].

(e) If g(X) < h(X), then E[g(X)] < E[A(X)].

Moments

Definition CB.2.3.1. (a) The k-th moment of X is ) = E(X*).
(b) Let p = p} = E(X). The k-th central moment of X is u = E[(X — p)*].

The mean of X is pj = E(X), often denoted by p or px . It measures the “location” of the
distribution of X .

The variance of X is pg = E[(X — p)?] = Var(X), often denoted by o2 or 0% . It
measures the “spread” or “variation” in the distribution of X .

The skewness of X is p3/(u2)?/? . It measures the “asymmetry” or “lopsidedness” of the
distribution of X .

The kurtosis of X is pq/(u2)*. It measures the “peakedness” or “heavy-tailedness” of the
distribution of X .
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. The following two formulas are sometimes helpful for calculating the variance of a random

variable,

Lemma N.2.2. Let p = E(X).

(@) Var(X)=E(X?) —p2.

(b) Var(X) =E[X(X - 1)] +p—p*.
Proof of (a): By definition, Var(X) = E[(X — p)?]. Expand (X — p)? =
X% —2uX + p?. Using Lemma N.2.1, we see E(X? — 2uX + u?) = '
E(X?) +E(-2pX) +E(4?) = E(X?) - 2uE(X) + p? = B(X?) — 2u® + u? =
E(X?)—pu?.0 '
Example. Suppose X ~ Binomial(n,p). Let's calculate its variance,

n
Instead of directly calculating E[(X — u)?] = 3 (z — u)?fx(z), it is easier to use Lemma
=0

N.2.2(b) and to first calculate E[X(X — 1)] = Zﬂ::z:(:n - Dfx(z) =
=0

42 ny\ . —_— ny___nl
zggm(x - 1)(I)p (1—-p)"*. Note that z(z — 1) (m) = T

n(n—1) (n"2 ) Now we have E[X (X — 1)] = n(n — 1)p? Z:% (::g)p"'Q(l —p)"

r—2

. = n(n—l)pzz(?)py(l—p)m_y where m=n—2 and y =z — 2. Since

y=0
(’:) pY(1 — p)™¥ is the pmf of the Binomial(m , p) distribution, the sum is equal to 1.

Therefore, E[X(X — 1)] = n(n — 1)p?. Recall that the mean of X is & = np. Now
Var(X) = n(n - 1)p* +np — (np)® = n’p? — np? + np—n’p? = np(1-p).|

Example. Suppose X ~ Normal(u,0?). Let's calculate its variance.
©o oo r—p)2
Var(X) = (X - p] = [ (&~ P fx(e)dz = [ (o~ pP—eg e 3 do

2
o 2o

o0 (=12
= — (x —p)?e 22 dz. Againit helps to change the variable of integration from z
;; 27a?
—00

1 F 2 o s
to 2 = (z — p)/o. Thisyields Var(X) = 75—-;_[02::2 e 2gdz = oy - fz2e' 2dz.
L R .

One way to evaluate this integral is to use the method of integration by parts. Another way,
which we will use here, is to change the variable of integration to w = 22/2. Then

sze‘sz = 2f226_7dz — 2f2we_w/\/2wdw = 2\/§fﬁ6_w dw. Note that
0 0 0

oo
@ /YeTw=T0) = i) = {vF Now Var(X) = F=2v/2hyF = of.
0
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The symbol o? is commonly used to denote the variance of a distribution. We have shown that
~ the parameter o in the Normal(x , o%) distribution is consistent with this common usage. ||

Some properties of variance are listed in the following lemma.

Lemma N.2.3 (see Theorem CB.2.3.1). Let X be a random variable, ¢ a constant, and g(X)
and h(X) functions of X whose variances are finite.
(a) Var(c)=0.
() Var(X +c¢) = Var(X).
(c) Var(cX) = *Var(X).
(d) Var[g(X) + h(X)] = Var[g(X)] + Var[h(X)] + 2Cov[g(X) , A(X)].
(e) Var(X) > 0 except when P(X = ¢) = 1 for some constant c.

Moment-generating functions

Definition CB.2.3.1. The moment-generating function (mgf) of a random variabge X (orofits
distribution) is Mx(t) = E(etX), provided this expectation exists for all ¢ in anfr:t'érval
containing 0.

The usefulness of moment-generating functions is shown in the following three theorems. The
first theorem shows that, true to its name, the mgf of a distribution can be used to generate the

. moments.

Theorem CB.2.3.2. The k-th moment of X can be obtained by taking the k-th derivative of

k
the mgf and evaluating it at £ = 0. Thatis, E(X*) = -(%;;M x(t) e

Partial justification: Let ustry to convince ourselves that the equation

E(X) = %M X (t)L_O makes sense. Starting from the definition Myx(t) = E(etX), we have

If_tM x(t) = a%E(etx ). Expectation is defined in terms of a sum (for a discrete distribution)

or an integral (for a continuous distribution). In “most” cases it is legitimate to differentiate a

sum or integral under the summation or integral sign (see Section 2.4 in C&B). Thus

d d d d
a_EE(etX) - E(Et.etX) _ Now Ee::)( — XetX , SO EEMX(t) — E(Xetx) and

G‘E Mx(t)lt:{) = E(Xe®) = E(X).O
Example. Suppose X ~ Binomial(n,p). (i) Its mgf can be obtained as follows.
Mx(t) =B(e¥) = L fx() = Lo (2)r -1 = 2 (3) (@)1 —2)
= =0

=

— (by the Binomial Theorem) [etp + (1 — p)]" = (pe! +1 — p)".
(ii) We can use the mgf to obtain the mean.

)
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First, 3 Mx(t) =4 (pe +1—p)" = n(pe' +1—p)"pet = np(pe +1—p)*~let.
Then, E(X) = S Mx(t)| _ =np(pe® +1-p)" 1" =np.

(iii) We can differentiate again to obtain the variance.

First, di:ng(t) = % [np(pet +1— p)"lef]

= np{(n — 1)(pe’ +1— p)"?pe* + (pe' +1— p)"'e'}

= np(pe’ +1 - p)"e{(n — 1)pe’ + (pe’ +1-p)}

= np(pe’ +1— p)"~2e'(npe’ +1-p).

Then E(X?) = %Mx(t)lt_ﬂ = np(pe® +1—p)"2e(npe’ +1—p) =np(np+1—p).
Now Var(X) =E(X?) — [E(X)]? = np(np+1~p) — (np)* = np(1-p). |

Example. Suppose X Normal(u, 02) @) Its mgf is:

My (t) = B(e'X) = fewfx(:r:)d:c fe*x - e gE:%)_d::: . mfew L%de

The trick to evaluating this integral is to “complete the square” in the exponent. That is, write
tr — 5y (z — p)? = - 5p2(~20%z +2° — 2uz +,u2) = - 57[a® = 2(0*t + p)z + 1]

1 * 1
= - m[{x — (@t + ) - (Pt +u) + ] == - gp(e - p) + (GO + )

1 - 1 2
where p* = 0%t + . Now Mx(t) = T——fe 302 (z— 1P+ (30 )

1,242

— e2o ttpt f ; e—il?f(z_” ) dz . Note that the integrand is the pdf of the
4 ;; 27w

Normal(u*, 02) distribution, and so the integral is 1. Therefore Mx(t) = arids
~ (ii) The mgf can be used to calculate the mean. First, ((litM x(t) = d (e"t"’" 2t2)

= (p +02t)e“‘t'*‘2"r £ and then E(X) = dtMX(t) =(p+0 O)ef‘o‘*'z o0 _ .

(iii) To get the variance, we first calculate 'd—th x(t) =g [(p + oQt)e"t""%"ztz]

= o?ert e 4 (4t 2ttt Then E(X?) = S Mx ()|

_ o2eH0HT0 () 4 20)2eH0HEOM0 — 52 42 S Var(X) = B(X2) — [E(X)
= (2 +p) - = |

The next theorem, which will be useful in Chapter 4, says that a distribution is completely

characterized by its mgf (if it exists).

Theorem CB.2.3.3. If two distributions have the same mgf, the two distributions must be
equal. Thatis, if Mx(t) = My(t) forall ¢ in an%ﬁ{érval containing 0, then
P(X € A) =P(Y € A) forall events A.

By applying the preceding theorem together with the following theorem, mgf's can be used to
find the limiting distribution of a sequence of distributions. -
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Theorem CB.2.3.4. If a sequence of mgf’s converges to an mgf, then the sequence of
distributions converges “in distribution” to the distribution determined by the limiting mgf.
That is, if Mx,(t) — Mx(t) as i — o0 for all ¢ in an open interval containing 0, then

P(X; € A) 2 P(X€A)asi—= X0 for “almost” all events A.

If X has a continuous distribution, then the probabilities converge for all events A.

If X has a discrete distribution, then for technical reasons, convergence is not required for
intervals with endpoints having positive probability, such as A = (—o0,a] when

P(X =a)>0.

This theorem will be used in Chapter 5 to prove the Central Limit Theorem.

Example. You may know from other courses that for large n a binomial distribution can be
approximated by a normal distribution. A mathematical justification of this approximation can
be obtained from Theorem CB.2.3.4. Let X, ~ Binomial(n,p) . Standardize it to obtain

Zn = (Xpn — pn)/0n Where pin = E(X,) =np and op, = SD(Xn) = +/np(1 —p). Let

7 ~ Normal(0,1). It can be shown (but it’s not easy) that Mz, (t) — Mz(t) as n — o0
forall t. ||

The distribution of a function of a random variable

If X is a random variable and g(z) is a function, then Y = g(X) is also a random variable.
The distribution of X determines the distribution of Y. If we know the distribution of X,
this means that we can obtain the value of P(X € A) for any event A . We can also obtain the
value of P(Y € A) for any event A. Let B ={z:g(z) € A}. For any function g(z) that
oceurs in the standard theory of statistics, the set B is also an event. Note that P(Y € 4) =
P(X € B).

Discrete distributions

Proposition N.2.4. Suppose X has a discrete distribution with pmf fx(z).

Suppose Y = g(X). Then Y isa discrete random variable with pmf
fr(y) = & fx(x) where By = {z: g(z) =¥}
ZEBy <« - | "
This is simply saying that P(Y = y) = P[g(X) = y]=P(X€B,) =% P(X=x).
zE€B

v
We can restrict attention to a set X’ such that P(X € X)=1. Ifwelet

Yy ={y:y=g(z) forsome z € X'}, then PY e)y)=1.
The expected value of Y = g(X) canbe computed in two ways:

(1) E(Y) = X yfr () or (2) Elg(X)] =2 g(z) fx ().
yey zeX
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By substituting the expression for fy(y) in Proposition N.2.4 into (1), one can verify that (1)
and (2) yield the same answer. Given the pmf of X, unless you are interested in the pmf of

Y = g(X) for some other reason, it is typically easier to calculate E[g(X)] using (2) rather

than (1).

Example. Suppose X is a discrete random variable with pmf given below:

z | -2 | -1 0 1 2 3
Fx(z) | 0.02 0.16 | 0.25 | 0.30 | 0.21 | 0.06

LetY =X2. LetX={-2,-1,0,1,2,3}. Then Yy ={0,1,4,9}.

Applying Proposition N.2.4, we get:
By = {z € X : 22 =0} = {0}, fr(0) = fx(0) =0.25;
By={z:z?2=1}={-1,1}, fr(1) = fx(= 1)+ fx(1) = 0.16 4+ 0.30 = 0.46;
By={z:2? =4} ={-2,2}, fr(4) = fx(-2)+ fx(2) = 0.02 +0.21 = 0.23;
By = {z: 22 = 9} = {3}, fr(9) = fx(3) = 0.06.

The value of E(Y) = E(X?) can be calculated as either

(1) E(Y) = 0(0.25) + 1(0.46) + 4(0.23) + 9(0.06) = 1.92, or

(2) E(X?) = (-2)2(0.02) + (- 1)2(0.16) + 02(0.25) + 12(0.30) + 2%(0.21) + 3%(0.06)

=1.92. ||

Continuous distributions

To deal with a function of a continuous random variable, we should keep track of the support
of the distribution. The support of a distribution with pmf or pdf fx(z) is the set X =

{xi_f_)_(_'(x)>g}, _______

' eald
Theorem CB.2.1.1. Suppose X has cdf Fx(x) and support X' = (a,b) where a cambe
— o0 and b earrbe oco. Suppose Y = g(X) where g(z) is a strictly increasing function
on (a,b). Thenthecdfof Y is

0 for y < g(a)
Fy(y) =< Fx(g7(y) for g(a) <y <g(d) .
1 for y > g(b)

This is simply saying that P(Y < y) = P[g(X) < y] =P[X < g7 (v)].

When g(x) is a one-to-one function (which is true when it is strictly increasing) the notation
g7 (y) is used for the unique value of z such that g(x) = y. That is, if the equation
g(z) = y is solved for z, then the solution constitutes the equation z = g l®@).

Theorem CB.2.1.2. Suppose X has a continuous distribution with pdf fx(x) and support

X = (a,b). .Suppose-Y = g(X) where-gfz)-isa-strictiy-increasing function-on—{a-b).
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(a) Suppose Y = g(X) where g(z) is a strictly increasing function on (a,b)
whose inverse function is continuously differentiable. Then Y has a continuous
“distribution with pdf
_ [ @) 59w for gla) <y < g(b)
fr(y) = : .
0 otherwise
(b) (postponed until later)
Justification: Recall that fy(y) = B Fy(y) Using the preceding theorem we see

-Q-Fy(y) == AF X (_q‘l (y)). Now use the chain rule of differentiation: @FX (¢ (y)) =

—FX( )l . dy g~ 1(y). Note that %Fx(m) = fx(z).O

This is an important formula. It may be easier to remember as

fr@) = fx(@)5  where z =g7'(y).

One way to remember to write % rather than gz_y is to remember that

[y = [ fx(m)d dy = [ fx(z)dz = 1, where the dy’s “cancel”.

Example. Suppose X ~ Uniform(0,1). Its pdfis fx(z) =1 for 0 < z<1(and =0

otherwise). Let Y = X?. The pdfof Y is givenby fy(y) = fx(a:) Solve y =z for

d d = 1
T=,/y. Now——“dy\/ﬁzayz_;yL———fandsofy(y)—l NN

for 02 <y < 1%, thatis, for 0 <y < 1 (and = 0 otherwise). || [’;’-ﬁ:
. | Ty,

The expected value of Y = g(X) can be computed in two ways: (1) E(Y) = f yfy(y)dy or et Ry

(2) E[g(X)] = f 9(z) fx(z)dz . Formula (1) is what you get from (2) by changing the variable

of integration from z to y = g(z). Given the pdf of X, unless you are interested in the pdf

of Y = g(X) for some other reason, it is often easier to calculate E[g(X)] using (2) rather

than (1).

Example. As in the preceding example, suppose X ~ Uniform(0,1). Its pdfis fx(z) =1
for 0 < z < 1. To calculate the expectation of X2, we can proceed as in (2):

3 =1

1
E(X?) = f:rzfx(m)d:r = f:r2da: - % 0= % ,
0 z=

Alternatively, we could use the pdf of Y = X? that we derived above. Recall that
" | y
friy) = 72_3; for 0 <y <1. So,asin (1),

1 1
1 1 1 2 3 1
E(Y)=fny(y)dy=fy2 =§f =§ §y2 =§ “
0 0
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The following lemma can be useful for calculating the derivative d% g 1(y) that occurs in the

formula in the theorem above.

Lemma N.2.5. If g(z) has a positive derivative for a < = < b, then:
(a) it has an inverse function g~!(y) defined for g(a) <y < g(b),
() g '(y) has a positive derivative for g(a) <y < g(b),

S o d
© o) =1/g'(s7' W) where g'(z) = F9(=).
For short, part (c) can be written as gm—a =1 / déxE ;

Theorem CB.2.1.4. If X | is a continuous random variable with support X = (a,b), then:

(a) itscdf Fx(z) is strictly increasing on (a;b), |

() Y = Fx(X) ~ Uniform(0, 1),

(¢) if U ~ Uniform(0,1), then Fx'(U) has the same distribution as X .
Justification: (a) For a < z < b, thatis, for z in the support, we have %Fx(a:) o
fx(zx) > 0, which implies that Fx(z) is strictly increasing.

(b) By Theorem CB.2.12, fy(y) = fx(Fx'()) - & Fx' () for Fx(a) <y < Fx(b).
Since (a,b) is the support of X, Fx(a) =0 and Fx(b) = 1. By Lemma N.2.5(c),

L piw) =1/ F4(Fr' ) = 1/ fx(Fx')). Hence fr(y) = fx(Fx'®)) / 1x(F5 )
=1 for 0 < y < 1. This is the pdf of the Uniform(0, 1) distribution.

(c) Part (b) says that U g Fx(X), where the notation V 4 W meansthat V and W have
the same distribution. If V & W, then g(V) d g(W) for any function g. Thus

F'(U) & Fp'(Fx(X)) = X.0O

(Part (c) can be used for random number generation. In order to generate a random observation

A from a continuous distribution with cdf F(z), first generate a uniform random number U and
then calculate F~1(U).

Theorem CB.2.1.2 can be extended to other functions g(z) .

Theorem CB.2.1.2 (continued). Suppose X has a continuous distribution with pdf fx(z) and
support X = (a,b).
(b) Suppose Y = g(X) where g(z) is a strictly decreasing function on (a,b)
whose inverse function is continuously differentiable. Then Y has a continuous
distribution with pdf
ol { fx(o @) | o @) for 9(e) <y <a®)
0 otherwise
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Theorem CB.2.1.3. Suppose X has a continuous distribution with pdf fx(z) and
support X = (a,b). Consider Y = g(X). Suppose the support can be split into
subintervals, (a,b) = (¢1,c2) U (e2,¢3) U+ U(cp-1,cr) U (ck ,Cky1), Where
¢; = a and ¢gyq = b, such that on each subinterval g(z) is either strictly increasing
or strictly decreasing. (Note that for convenience we are ignoring the points ¢z ,¢3,..-,
cx , which is permissible because a finite set of points has probability O for a continuous
distribution.) Let g;!(y) denote the inverse function of g(x) on the interval (ciyciv1).
Then Y has a continuous distribution with pdf

fel) = S fx(a @) - |9 )|

where the summation is over those indices i for which g7!(y) is well-defined, that is, for
which there exists some z € (c;, ci41) With g(z) = y. (If there are no such indices 1,
then the sum is taken to be 0.)

Examples. (1) Consider Y = |X|. The function g(x) = |z is strictly decreasing for
z € (—00,0) and is stn'ctly increasing for z € (0,00). On theinterval (- co,0), we have
= -z, z= -y and —; — —1. Ontheinterval (0,00), wehave y =z, z =y and

2 _ 1. Thus fy(y) = fx(-9)- |- 1+ fx@) - 1 = fx(-9) + ).

(2) Consider Y = X?. The function g(z) = z? is strictly decreasing for = € (- c0,0) and

is strictly i mcreasmg for € (0,00). On theinterval (- oo 0) we have y = a:2 a: = - /Y
and dx -3 \/— On the interval (0,00), we have y = 22, z = /¥ and f
Thus f(3) = (- vB)- |- 25| + x| 57| = 55 1~ v®) +fx(f)]

.
(3) Consider Y = X2 when X ~ Normal(0,1). The pdfof X is fx(z) = 12W e T

1 1 1 ¥
From (2) we know fy(4) = 577 | fx(~ V@) +iWD] = g2 et] =
Vé—wa e for y >0 (and =0 for y < 0). Thisis the pdf of a Chi-squared distribution

with 1 degree of freedom (see p. 626). ||

LN
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CHAPTER 4 — Jointly distributed random variables

Bivariate random vectors
]

Suppose we observe an experiment that produces two random variables X and Y. Even
though we may know everything about the distribution of X and about the distribution of Y,
this does not tell us everything about the joint distribution of the two random variables. That
is, we cannot figure out P(X € A and Y € B) from the values of P(X € A) and P(Y € B)

alone.

Example. Toss a fair coin twice. Let V; = the number of heads on the first toss, Vo = the
number of heads on the second toss, and V3 = the number of tails on the first toss. All three of
these random variables have the Bernoulli(3) distribution. Therefore, in all three of the
following cases, P(X = 1) = 0.5 and P(Y =1) = 0.5.

@) fX=Viand Y =Vj,thenP(X =1and ¥ =1) =0.5.

() f X=V; and Y = V5, then P(X =1 and Y = 1) = 0.25.

(i) f X=Viand Y =V3,then P(X =1and Y =1) = 0. ||

A bivariate random vector is, roughly speaking, a pair of numberf that has been randomly

generated. Let (X,Y) be a bivariate random vector. The joint distribution of (X ,Y)

consists of the probabilities P()%@&:m'ﬁ') for all events A-and=B ) im Pa venf PF“'“ e
‘ €

Considered by itself, X is a random variable (and so is Y'). The marginal distribution of X
consists of the probabilities P(X € A) for all events A t£e el Arve., s

The words “joint” and “marginal” are simply for emphasis and can be omitted; we can talk
about the distribution of (X ,Y") and the distribution of X without any ambiguity.

Discrete distributions

A bivariate random vector is discrete if there is a finite or countably infinite set C' of pairs of
real numbers such that P[(X,Y) € C] = 1. The distribution of a discrete bivariate random
vector is often given by specifying its joint probability mass function (joint pmf),

fxy(z,y) =P[(X,Y)=(z,y)] =P(X =z and ¥ =y)
forall z and y. Of course for (z,y) ¢ C, fxy(z,y) =0. Sometimes the joint pmf is
denoted simply as f(z,y). To be a valid joint pmf, the function must satisfy:

(@ f(z,y) >0 foral z,y,
(b) Ezf(x,y) =1.

allz,y

For any event D in the real plane, we can calculate
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P[(X,Y)-G D] = > fxy(z,y).
(z,y) €D

Theorem CB.4.1.1. The marginal pmf of X can be expressed in terms of the joint pmf of
(X,Y) as fx(z) =a%: fxy(z,y).
8 y

Justification: This theorem is simply saying that P(X =z) =) P(X =z and Y =)
all y

. This follows from the Axiom of Additivity for probability. Note that the event (X = z) is
the union of the pairwise disjoint events (X =z and Y =y).0

A similar expression holds for the marginal pmfof ¥".

Definition. The expected value of a function g(X ,Y’) of a discrete bivariate random vector is

E[Q(X!Y)] =a§mzyg($ ) y)fX,Y(m ) y) .

The expected value of Z = ¢g(X,Y) can be computed in two ways:
(1) E(Z) =3 2fz(2) where fz(z) is the pmf of the random variable Z,

all z

(2) E[g(X,Y)] =a>§3:yg<x W ixy(E,y).

Consider a function that involves only X and not Y, say h(X). Its expected value can be
computed in three ways:

(1) E(Z) =3 zfz(z) where Z = h(X),

all z

(2) E[r(X)] =a§: h(z)fx(z),
(3) ERX)] =22 h(z)fxy(z,y).

allz,y
In (3) we are using the definition above with g(z,y) = h(z). To verify that (2) and (3) give
the same result, note that 3> h(z)fxy(z,¥) =2 Y k(@) fxy(z,y) =

allz,y allz ally
Y k(@)Y fxy(z,y) = (by Theorem CB.4.1.1) 3 h(x)fx(x).
allz ally all z

Continuous distributions

We use the phrase “continuous” as short for “absolutely continuous”. Thatis, (X ,Y) is said
to have a continuous distribution if it has a joint probability density function (joint pdf), which
is a function such that

P[(X,Y)eD] = fo fxy(z,y)dzdy
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for all events D in the real plane. Sometimes the joint pdf is denoted simply as f(z,y).
To be a valid joint pdf, the function must satisfy:
(@ f(z,y)=>0 foral z,y,
® [2 [ fxy(@,y)dody=1.
Lemma (see CB(4.1.2)). The marginal pdf of X can be expressed in terms of the joint pdf of
(X,Y) as fx(@) = [ frr(e.v)dy.
Justification: The marginal pdf of X is defined to be a function such that P(X € A) =

f fx(z)dz for all events A in the real line. So we check that f { f _o:o fx'y(m,y)dy}dz =
A A

ff fxy(z,y)dxdy where D={(z,y):z € A,y € (-0, 00)}. By the definition of the
D
joint pdf, this last integral equals P(X € A and Y € (- 00,00)) =P(X € 4).0

A similar expression holds for the marginal pdf of Y.

Definition. The expected value of a function g(X,Y’) of a continuous bivariate random vector
is E[g(X,Y)] = ff;f:og(x,y)fx,y(x,y)dmdy-

The expected value of Z = ¢g(X ,Y’) can be computed in two ways:

(1) as E(Z) in terms of the distribution of Z,
which might be continuous or discrete or a combination
of a continuous component and a discrete component,

(2) as E[g(X,Y)] in the definition above.

Consider a function that involves only X and not Y, say h(X). Its expected value can be
computed in three ways:

(1) as E(Z) in terms of the distribution of Z,
@) as ER(X)] = [ 2 h(@)fx(a)dz, ~QEADPGRADE)
@) as ER(X)] = [ [ h(@)fxy(z,y)dzdy.

In (3) we are using the definition above with g(z,y) = h(z). To verify that (2) and (3) give
the same result, note that f _0:0 f joh(x) fxy(z,y)dzdy =

Joop@{ [7 (@, v)dy foz = oy CB@.12) [ h(@)fx(@)dz.
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Example. Suppose a point is randomly picked within a disk of radius R. The disk can be
expressed as D = { (z,y) : /22 + 2 < R}. What is meant by “randomly picked”? This
can be mathematically formulated by giving the bivariate random vector (X ,Y’) a uniform
distribution on the disk, that is,

Vo)
fX.Y(E,y)‘—‘{ ¢ i yz 4ot <H

0 otherwise

{g. Find the correct value of ¢ in order to have a valid pdf.
The pdf must satisfy f_oofﬁoofx,y(a: ,y)dzdy = 1. Now f_o:of_o:ofx‘y(m yy)dzdy =
ffcdxdy = cffdxdy =c x (area of D) =cnR?. Soset ¢ =1/7R?.
5 D

b. Find the marginal distribution of X .

VRI—22
fx(z) = f_mfx.y(w,y)dy = f %;dy WR [(1/R2 —22)— (- /R? _zz)] _
VR

;%5 V R? — 2% for -~ R < z < R. The limits of integration come from the condition

v z? 4+ y? < R, whichimplies — v/ R? —z2 <y < \/R? — 22,

¢. Find E(X).
E(X) = fjo zfx(z)dz f:r: = v/ R? — z2 dz = 0 because of the following lemma and
corollary.

Lemma N.4.1. If g(z) is an odd function (that is, if g( - z) = — g(z) for all z) and if
f_i!g(z)]dx < 00, then f_c:og(a:)d:c =0.

- m - m -
The finiteness of f _oo|9(z)|dz is needed to ensure that f o 9(z)dz exists.

Corollary N.4.2. Ifa pdf fx(z) is an even function (that is, if fx(—z) = fx(z) forall z)
and if E(|X|) < oo, then E(X) =0.

The corollary follows from the lemma because z fx(z) is an odd function if fx(z) is even.
Recall that the Cauchy(0, 1) distribution has a pdf that is an even function, but its mean is not
0 because the mean does not exist (because E(|.X|) = oo0).

In paﬁ c of our example, note that the pdf of X is an even function. Also note that E(|.X|) =

f|“:11r32 VR? —zdz < fR—-f\/Rﬂ 02dz = 28 < o
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d. Find Var(X).

Var(X) = E(X?) = fa: 25V R} —z2dx = sz:r: VR —2z2dz.

Lemma N.4.3. If g(z) is an even function (that is, if g(—z) = g(z) forall =) and if
f_o:olg(:c)]d:r < 00, then foo g(z)dz = 2j:°g($)da:.

e

R
Therefore, Var(X) = —45 z24/ R? — 22 dz. Change the variable of integration to
B

u=z/R and then to ¢ = u? to obtain Var(X) = fu V1—uldu =

2R’ f\f\/ tdt. We recognize \/t\/1—t = 13(1 —1t)7 asakernel of a Beta($, 3) pdf.

(A functlon h(z) is said to be a kernel of a pdf fx(z) if fx(z) = ch(z) for some constant c
not depending on z.) Since a pdfintegrates to 1, the form of the Beta(a, ) pdf on p.
1

33
CB.626 tells us that 6[ zo-1(1 — z)fldz = %E_L%Z, Now Var(X) = 2 P(Fg)(g)(g) _

o L /rl 2
%Mz{i—. Thus SD(X) = £.

e. An alternative way to calculate Var(X) is to use the joint pdf of (X ,Y") rather than the
marginal pdf of X that is used in part d.

Var(X) = E(X?) -——f__ozofj;:ﬁfx'y(m,y)drdy=fox ﬂRgdxdy— =5 ff:c'zd:z:dy

If we do the double integral as an iterated integral in the order f { f xQdy}da: =
f :1:2{ f dy}d:c , we are doing the same procedure as in part d, since f E.lﬁfdy, with the

appropriate limits of integration, gives us fx(z). An alternative procedure is to compute an
- ) R VR
iterated integral in the order f { f mgdm}dy. Now Var(X) = ;—IR—Q- f { f $2dx}dy =
- R _yR-@

‘ ;-}Q—z f % (R? - *)2dy. By noting that the integrand is an even function and by changing the

vanable of integration from y to t = / R and then to w = ¢?, one obtains Var(X) =

2
2R fw‘z (1- w) 2dy. Here we recognize the kernel of a Beta(3 , 2) pdf, which leads us to

1
Var(X) = 23%2 ml—-z—r(r)(g)( = 122 A

The properties of expectation for functions of a bivariate random vector are essentially the
same as for functions of a single random variable.
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Lemma N.4.4 (see p. CB.131). Let (X,Y) be a bivariate random vector, ¢ a constant, and

g(X,Y) and h(X,Y) real-valued functions of (X ,Y’) whose expectations exist.
(a) E[g(X,Y) + C] = E[Q(X:Y)] +c.
(b) Eleg(X,Y)] = cE[g(X,Y)].
(©) E[g(X,Y)+h(X,Y)] = E[g(X,Y)] +E[r(X,Y)].
(d If g(X,Y) < h(X,Y), then E[g(X,Y)] < E[h(X,Y)].

The distribution of (X ,Y’) is completely determined by its joint cumulative distribution

function (cdf), Fxy(z,y) =P(X <z and Y <y) forall —oco <z < oo and

—00 <y <00,

If (X,Y) has a discrete joint distribution, then the joint pmf can be obtained from the joint cdf
as fxy(z,y) = Fxy(@,y) — Fxy(z—€,9) = Fxy(z,y— €+ Fxy(z — €,y —€).

If (X,Y) has a continuous joint distribution, then the jcint pdf can be obtained from the joint

2
cdf as fX.Y(msy) = a_gg-)_yFX,Y(x,y)'

Conditional distributions

Discrete distributions

Recall that if we know P(A) and P(B|A), then we can obtain P(AN B) = P(A)P(B|A).
Suppose (X,Y) has a discrete joint distribution. If we know P(X = z) and
P(Y =y|X = z), then we can obtain P(X =z and Y =) =P(X = z)P(Y =y| X ==).

~ That is, in pmf notation, fxy(z,y) = fx(z) frix(y|z). Thus we define the conditional pmf

of Y given X tobe

frix(y|z) =PY =y|X =x2)
if the conditional probability is well-defined, i.e., if fx(z) =P(X =z) > 0.

For fixed z, the conditional pmfis a valid pmf for y, because (a) fy;x(y|z) > 0 forall y

and 0) 3 frix(w|z) = SPY =y|X=2)= L P(X =z and Y =3)/P(X =z) =
all y all y all y

PIX =m)/P(X=1z) =1,

The conditional éxpectation of g(Y) giventhat X = z is simply the expectation of ¥ under

its conditional distribution given X = x:

E[g(¥)| X =z] = §g(y)fr|x(y|$)-
all y

Write h(z) = E[g(Y)|X = z]. Thisisa function of z. Plugging in the random variable X,
we obtain the random variable h(X) = E[g(Y")| X] (this notation is used instead of the
funny-looking E[g(Y)) | X = X]). It can be shown that E[h(X)] = E[ g(¥)].
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Theorem N.4.5 (see Theorem CB.4.4.1). E[¢(Y)] = E[E[¢(Y) | X]].

This provides a two-step procedure for calculating E[ ¢(Y")] that is sometimes easier than
calculating it directly from the marginal distribution of Y.

Example. A salesman makes an average of 1.6 sales per day. The average amount of a sale is
$150. On a randomly selected day, what is the expected value of the salesman's total amount
of sales for that day? To formulate this problem in mathematical terms, let T" = the total
amount of sales on that day. We want to calculate E(T"). We see that the value of T" depends
on N = the number of sales on that day. We know that E(N) = 1.6 and

E(T|N) = 150 N. Using the theorem above, E(T") = E[E(T'| N )] = E[150N] =

150 E(N) = 150(1.6) = 240. ||

Justification of the theorem: E[E[¢(Y)|X]] = E [ T g(y) fylx(y[x)] Fx(@)
zhaly

= 329 fxy(z,y) = E[g(Y)], because fyx(y|z)fx(z)= fxy(z,y).O

all z,y
Continuous distributions

Suppose (X ,Y) has a continuous joint distribution. The conditional pdf of Y given that
X =18

frix(y|z) = Qfﬁ%’l

provided that fx(z) > 0. Sometimes fy|x(y|z) and fx(z) are given first and then the joint
pdfis obtained as fxy(z,y) = fx(@)frix(y|z).

Example. In regression analysis it is often assumed that ¥ | X = z ~ Normal(a + Sz ,tgi) :
(In this case we are often not concerned about fx(z) and fxy(z,y).) ||

For fixed z, the conditional pdfis a valid pdf for y, because (a) fy|x(y|z) > 0 forall y and

(®) f frix(y|z)dy = f fxf;g)'y)dy= ﬁ;)'f_z fxy(z,y)dy = ?)ﬁfx(ﬂf') =1.

The conditional expectation of g(Y') given that X = z is the expectation of ¥~ under its
conditional distribution_given X =z :

Elg(V)| X =2 = [ . ) frix(y|z)dy

Theorem N.4.5 is true for all bivariate random vectors, continuous or discrete or mixed, for

which the expectations exist.
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Conditional mean and variance

The conditional mean of Y given that X = z is E(Y'| X = z), which is the mean of ¥’

under its conditional distribution given X =z
The conditional variance of Y given that X = z is the variance of Y under its conditional

distribution given X = z, that is,
Var(Y | X = z) = E[(Y — pyz)? | X =z] where py, =E(Y | X =1z)
=E(Y?|X = z) _'“%’Ir
=EY?|X=z)-[EY|X =2z)?.
According to Theorem N.4.5, the unconditional mean of ¥~ can be obtained from the
conditional mean as E(Y") = E[E(Y | X)]. There is a similar formula for the variance:

Theorem CB.4.4.2. Var(Y) = E[Var(Y | X)] + Var[E(Y' | X)].

Var(Y | X = =) measures the variation of Y around E(Y | X = =) for a fixed value of z.
So the variation of Y can be decomposed into the component E[Var(Y" | X)], which measures
the expected variation of Y around E(Y'| X), and the combonent Var[E(Y | X)], which
measures the variation of E(Y | X).

Example (cont'd). Recall the example about the salesman in which E(IV) = 1.6 and
E(T|N) = 150 N. We found that E(T") = 240. Let us try to calculate Var(T'). To do this
we need more information. The standard deviation of the number of sales in a day is 1.1, that is
Var(N) = (1.1)2 = 1.21. The standard deviation of the amount of a sale is $75. Let Ay,

..., Ay bethe amounts of the N sales during a day. Then T'= A; +--- + Ay . Assume the
amounts A; are independent of one another. Then (see Lemma CB.5.2.1)

Var(T'| N =n) = Var(4; +--- + A4,) = n(75)2 = 5625n. So Var(T'|N) =5625N .
Now the theorem above can be applied to yield Var(T) = E[Var(T | N)] + Var[E(T'| N)] =
E[5625 N] + Var[150 N] = 5625 E(N) + (150)%Var(N) = 5625(1.6) +22,500(1.21)

= 36,225. ‘So SD(T) = 190. || -

Independence

Recall that A and B are independent events if P(A|B) =P(4).
Let (X,Y) be a bivariate random vector.

Definition N.4.6. X and Y are independentif P(X € A|Y € B) =P(X € A) for all events
A and B for which the conditional probability is well-defined (that is, P(Y € B) > 0).

Lemma N.1.13 implies the following lemma.
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Lemma N.4.7. The following statements are equivalent:
(i) X and Y are independent.
(i) P(XeAand Y € B)=P(X € A)P(Y € B) forallevents A and B.
(iii) P(Y € B|X € A) =P(Y € B) forall events A and B for which P(X € 4) > 0.

Now suppose (X ,Y) have a joint pmf or pdf fxy(z,y).

Lemma N.4.8. The following statements are equivalent:
() X and Y are independent.
() fxyy(z|y) = fx(z) forall z and y for which fy(y) >0
(i) fxy(z,y) = fx(z)fy(y) forall z and y.
(iv) frix(wlz) = fr(y) forall z and y for which fx(z) > 0.

Justification: Statement (ii) follows from statement (i), i.e., from Definition N.4.6, by
letting A = {z} and B = {y} (in the discrete case). Recall that fxy(z,y) =
fx (=) frix(y|z) = fr () fxjy(z |y) . This implies the equivalence of statements (i), (ii) and
(iv). To complete the justification, let us show that statement (iii) implies statement (ii) of
Lemma N.4.7. In the continuous case, we have P(X € A and Y € B) =
fffxy(x,y)d:ndy where D = {(z,y):z € A and y € B} = A x B. Assuming (iii),

D

this equalsA J fB Fx (@) fy (y)dzdy = f fx(z)dz f fr(w)dy = P(X € A)P(Y € B).O

(Strictly speaking, in the continuous case, the word “all” in Lemma N.4.8 should really be
“almost all” — due to the technical fact that the pdf of a continuous random variable can be
changed on a finite or countably infinite number of points without changing the distribution.)

Example. Let X and Y be two independent random observations from a population
distributed as Normal(u , 0%). Thejoint pdf of (X Y) is fx yizy) = fx(:r:) friy) =
)2 . By b A0
a2 . o ——2— e 2a 2 20 A
;; 2mwo? ;; 2mo? 2o
Lemma CB.4.2.1. Let (X,Y) be a bivariate random vector with joint pmf or pdf fxy(z,y).
Then X and Y are independent if and only if there are functions g(z) and A(y) such that

fxy(z,y) = g(z)h(y) forall z and y.

= vraie

Justification: If X and Y are independent, then Lemma N.4.8 says that

fxx(z,y) = g(z)h(y) with g(z) = fx(z) and h(y) = fr(y). Conversely, suppose
fxy(z,y) = g(z)h(y) where it is not necessarily true that g(z) = fx(z) and h(y) = fy(y).
Then g(z) is a kernel of fx(z), because (in the continuous case) fx(z) =
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f_ozo fxy(@,y)dy = f_ozo g(z)h(y)dy = s;f(x)f_o:o h(y)dy = c g(z) where ¢ = f_: h(y)dy.
Similarly, fy(y) = bh(y) for a constant b. Hence fx,y(z,y) = g(z)h(y) = fx(z)fr(y)/cd.
Since fxy(z,y) and fx(z)fy(y) both integrate to 1, we must have ¢cb = 1.0

It is importanf to remember that the definition of fx y(z,y) includes the ranges of z and y.
To keep track of this, it often helps to write the ranges in terms of indicator functions.

Example. Consider the joint pdf f(z,y) = 8zy for 0 < z < y < 1. We can write
8zy = g(z)h(y) where g(z) = 8z and h(y) =y. But X and Y are not independent,
\ because, for instance, P(X > 0.5|Y < 0.5) = 0 3 0.5625 = P(X > 0.5). The pdfis not
2 simply f(z,y) = 8zy. This is the value of the pdf only for z and y satisfying
| 0 <z <y<1. Itissafer to write f(z,y) = 8zy Iy (x)I(z,1)(¥). (Seep. CB.114 for the
indicator function notation.) M}_glearer that we cannot factor the joint pdfiinto the

More generally, X and Y cannot be independent if, in the support of (X ,Y’), the range of =
epends on the value of y. Thatis, for X and Y to be independent, {z : fxy(z,y) >0}
must be the same for all y. Also, {y: fxy(z,y) > 0} must be the same for all z.

Theorem CB.4.2.1. If X and Y are independent, then E[g(X)h(Y)] = E[¢(X)]E[h(Y)].

Justification: Inthe continuous case, E[g(X)h(Y)] =

oS s@h)sxy (@, y)dzdy = [ 7 o@)hy)fx (@) fr (y)dedy =

[° g@)ix(@)dz [~ my)fyv)dy = E[g(X)E[A(Y)]. O

Corollary. Suppose X and Y are independent with means x and v and variances o2
and 72. Then E(XY) = pv and Var(XY) = 0?72 + o20? + p272.

Justification: E(XY) = E(X)E(Y) = puv and Var(XY) = E(X?Y?) — [E(XY))?

=E(X?)E(Y?) — p®v? = (o + ) (2 + %) — p2? = o2 + 0% + ¥ .0

Theorem CB.4.2.}.' If X and Y are independent, then Mx .y (t) = Mx(t)My(t).

Justification: My4y(t) = E[e!X1Y)] = E[etX+tY)] = E[e!XefY]. Now apply the

preceding theorem to get My .,y (t) = E[e!X]|E[etY] = Mx(¢t)My(t).O

Example (Theorem CB.4.3.1). Suppose X ~ Poisson(A) and Y ~ Poisson(u) are

independent. On p. 625 we see that the mgf of X is Mx(t) = eMet-1) By the theorem,
MX-{-Y(t) = Mx(t)My(t) == eA(et—l)e‘u(et-—-l) — eA(et—l)'hu‘(et_l) = e(’\+.u')(et—1) s which

_ is the mgf of a Poisson(\ + ) distribution. By the uniqueness of mgf's (Theorem CB.2.3.3),
X +Y ~ Poisson(A + ). ||
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Example (Theorem CB.4.2.3). Suppose X ~ Normal(i,0?) and ¥ ~ Normal(v,7%) are

independent. On p. 628 we see that the mgf of X is Mx(t) = ent+a’t’/2 By the theorem,
M,y (t) = Mx(t) My () = e it+o? (2 gt (2 _ o pt+ot [2tut4 T )2

= epHtH@* )82 which is the mgf of a Normal(i + v, o2 4 72) distribution.

By the uniqueness of mgf's, X +Y ~ Normal(u +v,0% + 7). ||

Theorem CB.4.3.2. If X and Y are independent, then U = g(X) and V = h(Y) are
independent.

Justification: Use LemmaN.4.7. Consider P(U € A and V € B) =

P(g(X) € A and h(Y) € B) =P(X € C and Y € D) where C = {z: g(z) € A} and
D = {y: h(y) € B}. Now appeal to the independence of X and ¥ to conclude that
PUeAand VeEB)=P(Xe€C)P(Y€eD)=P(U € A)P(VeB).O.

The distribution of a function of a bivariate random vector

If (X,Y) is a bivariate random vector and g(z,y) is a real-valued function, then U =
g(X,Y) is arandom variable. Given the distribution of (X ,Y’) we would like to find the -
distribution of U .

Discrete distributions
Suppose (X ,Y) has joint pmf fxy(z,y). The pmfof U = g(X,Y) is
fo(u) = P(U =u) = Plg(X,Y) =u].

Rather than deal with X and Y simultaneously, it is often easier to deal with them one at a
time, by using the Theorem of Total Probability.

Plo(X,¥) =u] = SR = 2Plo(X,¥) = u| X =2]
= EEP(X:o:)P[g(x,Y) =n[X =gl

LemmaN.4.9. If X and Y are independent discrete random variables and U = ¢(X ,Y),
then the pmfof U is fy(u) = > P(X =z)P[g(z,Y) =u].
: all z

Example. Suppose X ~ Binomial(n,p) and Y ~ Binomial(m , p) are independent. Let us
find the pmf of U = X +Y . Using the lemma above, we obtain

fu@w) = SP(X =z)P(z+Y =u) = L, P(X =z)P(Y =u—2z)

all z all x

- £ (D)7, )psa - pmetees



- 37 =

=2 (M) ([ )=ty = (M7 )pM -

tfn m n+m .
because x};ﬂ(m) (u_z) = ( i ) , because to choose u things from among a set of n +m
things, one can divide the set into two subsets of sizes n and m and then choose = things

(z < n) from the subset of size n and choose the remaining v — z things from the subset of

size m. We recognize the pmf of U  as that of the Binomial(n + m, p) distribution. ||
Continuous distributions |

Suppose (X ,Y) hasjoint pdf fxy(z,y). The pdfof U = g(X,Y) can be found through
the three steps below, provided that the function g(z,y) is “well-behaved” enough so that
steps 1 and 2 are possible.

Step 1. Write U = ¢,(X,Y). Find (if possible) V' = g,(X,Y’) suchthat X and ¥ can
be solved forin terms of U and V:

U=g(X,Y) X =h(U , V)

V=gl%;Y) Y=F)U,V).
Step 2. Ifthe functions h, (u,v) and h,(u,v) are differentiable, then the joint pdf of
g(WU , V) can be obtained as

M). fU.V(u:v) = fX,Y(Ity)lJl

oz Oz
iwhere J is the Jacobian matrix J = ggz’fg = g; g; and |J| is the absolute value of

Ou Ov
the determinant of the matrix J. Thus |J| = % g% —= % %[ . (Note that this is the

bivariate analog of the univariate Theorem CB.2.1.2, which states that if U = g(X), if
X can be solved for in terms of U as X = h(U), and if h(u) is differentiable, then fy(u)

dz
= fx@)|$E])
%‘Step 3. The marginal pdf of U is obtained as fy(u) = f_O:Q fov(u,v)dv.
Example. Suppose X and Y are two independent Normal(0, 1) random variables.
Let us find the pdfof U = X/Y .

Step 1. Let V =Y. (Many other choices for V' are possible, suchas V' = X or 1 /X or
1/Y or X +Y . One can try to choose V' to make the calculation of the Jacobian easy or one
can choose V' to be another random variable besides U that is of interest.) Then

IF =X/ ¥ X=UV



e

oz Jok
Step 2. 5 =V By = U
o) 7] v ou
5 =0 2 =1 so J=[O 1} so  |J|=y.

fov(,v) = fxy(z,v) |J]| = fxyww,v) o] = fx(uv)fy(v) vl
2
1 _ fuw)® 1 .__9_2. - [_vl L4 M —l(t.c2~+-1)u2
We should always be careful about the domain of any pdf formula. The formula above holds
for all z and y, and so it holds for all v and v.
Step 3. fu(u) = f_ozo fov(u,v)dv = f_zjz%rl e T W g (because the integrand is
an even function) 2 fooo % et Y g 7-1F J:Ov e~1( )Y g, The integrand can be
recognized as the kernel of a Weibull pdf with v = 2 and 8 = 2/(u® +1). So the integral is
the reciprocal of the constant -y/(3 in the Weibull pdf. Thus f Doo'u e~ By, Bfy=
1/(u® +1),and so fy(u) = Wiur) , which is seen to be the pdf of the Cauchy(0, 1)
distribution. Therefore, the ratio of two independent Normal(0, 1) random variables is a
Cauchy(0, 1) random variable. ||
Example (continued). Continue to let X and Y be two independent Normal(0, 1) random
variables. Let us find P(X/Y < 2). There are two ways to approach this problem.
(A) One approach is to first find the distribution of U = X /Y . From above we know that
U ~ Cauchy(0,1). Now
2 2 1
PU<2)= [ fotwdu = [ oy

u=2

= ;’1? arctan(u) = %[arctan(2) — arctan(~oco)]

U=—=00

= 11107~ )] = 0.8524.

(B) Another approach is to calculate the probability directly from the joint distribution of
(X,Y). P(X/Y <2) =P[(X<2Y and Y >0)or (X >2Y and Y < 0)] =

P(X <2Y and Y > 0) + P(X > 2Y and Y < 0). Let ¢(z) denote the pdf of the
Normal(0, 1) distribution and let ®(z) denote its cdf. Now

P(X <2Y and Y > 0) = [ [ fxy(z,y)dzdy
D

where D = {(z,y) :x <2y and y > 0}. Thus
P(X <2Y and ¥ > 0) = {) [e@dwdzdy = [7[ [ o()dz] 6wy

= [ 78 (2y)p(v)dy. |
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It can be shown that P(X > 2Y and Y < 0) has the same value, so P(X/Y < 2) =
2 j:o‘i(2y)¢(y)dy. One can integrate this numerically. Using MATLARB, this integral can be
calculated by forming the function |
function g = g(y)
g = normcdf(2*y).*normpdf(y);
and then calculate the numerical integral
2*quad('g',0,b)
forb=1,2,3,4,5, noting convergence to 0.8524 forb =4,5. ||

Example. Suppose X and Y are two independent random variables with distributions
Gamma(c, 1) and Gamma(p, 1) respectively. Let us find the pdfof U = X/ (X +Y).
Step 1. Let V =X 4+Y . Then we have

U=X/(X+Y) X=UV

V=X+Y Y=(1-U)V.
dz oz
Step 2. B =V Ty T4
8 8 v u
8—3:—?_} -é%: —u, SO Jz[_'u 1_u]sso I‘Il:Ivl

foyv(u,v) = fxy(z,y) |J| = fxy(uv, (1 —u)v)y|
= fx@)fy (1= w) | = pi5 @)™ s ((1 - wp)r-le G-y

P N
= T

-
- Tre)
The domain of this pdf formulais 0 < z < 00 and 0 < y < 0o, hence 0 < uv < oo and

a~1 (1- u)p—lUa—1+p—1+le—uv-(1~u)v

a—l(l _ u)p—lva+p-le——v .

0 < (1 —u)v < co. Adding these two inequalities we obtain 0 < v < co. Dividing the two
preceding inequalities by v, we obtain 0 < u < 0o and 0 < 1 — u < oo, which is equivalent
to0<u<1.

Alternative step 3. Note that
fov(u,v) = Cg(u)h(v), 0<u<1l,0<v<oo,

where C' is a constant, g(u) is a kernel of the Beta(a, p) pdfand h(v) is a kernel of

the Gamma(a + p, 1) pdf. Without doing any integration, we can conclude that

X/(X+Y) ~ Beta(a,p), X +Y ~ Gamma(ea + p, 1), and that the two random variables
are independent. ||
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Hierarchical models

Lemma N.4.10. If X |Y =y has pmf fxjy(x|y) and Y has pmf fy(y), then X has pmf
fx(@)= 2 fxy(|v)fr ().

ally

Justification: This follows from Theorem CB.4.1.1 and the fact that fx y(z,y) =
fX|Y($ ly)fr(y).O

Example. Suppose X |Y = y ~ Binomial(y, p) and Y ~ Poisson(\). This can be used as a
simple model for insect reproduction, letting Y be the number of eggs laid by an insect and
letting X | Y = y be the number of eggs that survive given that y eggs are laid. The pmf of
the marginal distribution of X is .

1x@) = ShorElnfre) = £ (1)ra-ppre s
ally =z
= y! e MV i 2 -
= D (- TR = By -

- P——;_ tz% L(1-p)Att®  (letting t =y — z)

s FENE BAL  PEVE ey o, FIAAS
- z! = t! e z! - z! )

!
Here we have used the summation fact E W= = e} , with A replaced by (1 — p)A . This fact
t=0

is a consequence of the fact that the Poisson(\) pmf sums to 1. We recognize this pmfas a
Poisson(pA) pmf. Therefore X ~ Poisson(pA). ||

LemmaN.4.11. If X|Y =y has pdf fxjy(z|y) and Y has pdf fy(y), then X has pdf
fx(@) = [, x| fr@)dy.

Justification: This follows from CB(4.1.2) and the fact that fx y(z,y) =
fxir(z|y)fr(v).O
Example. A machine produces bolts of length X . A setting ¥ on the machine regulates the
average length of the bolts. The setting is subject to error. Assuming X |Y =y ~
Normal(y,b?) and Y ~ Normal(a,c?), let us find the marginal distribution of X .
Its pdfis

fx(@) = [ fxiv(=|y) fr(y)dy

e
= f 7;:; 7—- dy

= 27rbc fe _bi(x L —;—(v a) dy
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Through messy algebraic manipulation, the exponent can be rewritten as
1 % 1 . 1
— @ -y’ - 32— a) = - m— ) - gy (e — o)’

where p* is some quantity not involving y (other than this, it doesn't matter exactly what p~
is) and o*? = b%c?/(b% + c?). Now

r—a)? oo _u*)2
Fel) = =k D [ T

2mbe dy
=00
r—a 2
1 b2 )c_? *
5 © 2(654<%) 4/ 2rg*2

which is the pdf of the Normal(a, b* + c?) distribution. ||

LemmaN.4.12. If X |Y =y is discrete with pmf fxjy(z|y) and Y is continuous with pdf
o.o]
fr(@), then X haspmf fx(z) = [ fay(z|v)fr(v)dy.

To formally prove this lemma, one should first define what is meant by fx|y(z|y) when X is
discrete and Y is continuous. But skipping the formal definitions, we can say that by analogy
with the preceding two lemmas, this result seems correct.

Example. Suppose X |Y =y ~ Poisson(y) and Y ~ Exponential(5) . The marginal pmf
. o0 x Y 1 _

of X is fx(@) = [ fxw(el)fr@)dy = [ Se vy =

0

N 1
,6’(13:!) fy”e_y(l""ﬁ)dy. The last integrand is a kernel of the Gamma(z + 1, 1—_%) pdf, so we
o

z+1 x x
obtain fx(z) = Fé-!-)-r‘(:c-{—l)(f%) = (1+%)I+1 = liﬁ(l—fﬁ) , which is the pmf

of the Negative binomial(p = 141—_[3 ,7 = 1) distribution. This is almost the same as the

Geometric distribution: if X ~ Negative binomial(p, 1}, then X + 1 ~ Geometric(p). ||

ng'ariance and correlation

Suppose X and Y are jointly distributed random variables with means 4, and p, . Their
covariance is defined to be Cov(X,Y) = E[(X — u, )Y — u,)].

Theorem CB.4.5.1. Cov(X,Y) =E(XY) — p,u, .

This formula can be justified through algebraic manipulation of E[(X — u, )(Y — u,)] (see p.
CB.161). When X =Y, note that Cov(X , X) = E[(X — p,)?] = Var(X). In this special
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case the formula in the preceding theorem is the same as formula CB(2.3.1): Var(X) =

E(X?) — k.

Some properties of covariance are listed in the following lemma.

Lemma N.4.13 (see Theorem CB.4.5.3). Let X, Y and Z be jointly distributed random
variables and let ¢ be a constant. :

(@) Cov(c,Y)=0.

() Cov(X+2Z,Y) = Cov(X,Y)+Cov(Z,Y).

(¢) Cov(eX,Y) = cCov(X,Y).

(d) Var(X+Y) = Var(X) + Var(Y') + 2Cov(X,Y).

(&) Cov(Y,X)=Cov(X,Y). |

Partial justification: These properties all follow from the definitions of covariance
and variance and from the properties of expectation.

For (a), recall that E(c) = c, so that Cov(c,Y) = E[(c — ¢)(Y — p, )] = E(0) = 0.

For (c), recall that E'(cX ) = cE(X), so that Cov(cX,Y) = E[(cX — cp, )(Y — )] =
Ele(X — iy )(¥ — )] = cE[(X = i )(¥ — 1,)] = cCov(X, ).

For (d), Var(X +Y) =E[(X +Y — py — 1, )*] =E[((X — 1) + (¥ — ,))*] =

E[(X — px)* + (¥ — 1y ) + 20X = py )Y = )] = B[(X — p ]+ E[(Y — s, )] +
2E[(X — p, )Y — p, )] = Var(X) + Var(Y) + 2Cov(X,Y) . O

Theorem CB.4.5.2. If X and Y are independent, then Cov(X,Y) =0.

Justification: Cov(X,Y) =E[(X — p,)(Y — )] = (by independence)

E(X — py JE(Y — p1,) = 0, because E(X — ) =E(X) —p, = p, —p, =0.0

The correlation (or correlation coefficient) of X and Y is defined to be
Pxy = Cov(X,Y)/o,0,.

Suppose that ¥ tends to be above average when X is above average and that Y tends to be
below average when X is below average. We can express this by saying that X — p, and

Y — p, tend to have the same sign, or by saying that (X — u, )(Y — p1,) tends to be positive.
Then Cov(X,Y) =E[(X — 1, )Y — p,)] > 0 and p,, > 0, and we say that X and Y are
positively correlated.

Theorem CB4.54. (a) -1<p,, <1.
(®) If p,, =1,then Y =aX +b (w.p. 1) where a and b are constants with a > 0.
(©) If py, = -1,then Y =aX +b (w.p. 1) where a and b are constants with a < 0.
(The abbreviation “w.p. 1” means “with probability 1”.)
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Justification: A variance is always nonnegative, and it is zero if and only if the random
X _ p;,)-{;) > 0. Manipulation of this inequality

variable is constant. In particular, _Var(;};

using Lemma N.4.13(d) yields the theorem. O

Note that correlation really means “linear correlation”. Perfect correlation of X and Y means

that one is a linear function of the other.

Example. Let X ~ Normal(0,1) andlet Y = X*. Then X and Y have perfect “quadratic
correlation” but their linear correlation is 0, because Cov(X,Y) = 0. To see this, calculate

_ , c0 22
Cov(X,Y) = E(XY) — pyp, = B(X3) = 0-1=E(X?) =0, because fﬁﬁ e T dz

= 0 by Lemma N.4.1, which is applicable because the integrand is an odd function. The
integral of the absolute value is finite, that is, E(|X 3) < oo, because the mgf of X exists. If
the mgf exists then all moments exist. o

Incidentally, this example also shows that the converse of Theorem CB.4.5.2 is false.

The covariance of X and Y is 0 but they are not independent, because P(|X| < 1 and
Y>1)=P(X?<land X2>1)=0#P(X|<1)-P¥ >1). |

Example. Let X and Y bei.i.d. Exponential(1). The pdfis f(z) =e™* for z > 0. Let's
find the correlation of X/(X +7Y) and X. Let U = X/(X +Y) and V = X. We want to
caleulate Corr(U,V) = Cov(U,V)/o,0, = [EUV) — pyp,l/o,0, . Since V =X ~
Exponential(1), we know g, =1 and ¢ = 1. Note that Exponential(1) = Gamma(1,1).
We have seen in the example on p. N.34 that U = X /(X +Y') ~ Beta(1,1). Note that
Beta(1,1) = Uniform(0,1), so yu, = 3 and 03 = & . It remains to calculate E(UV). For
this we need the joint distribution of U and V. We know how to get their joint pdf. Note

that X =V and Y = (3 — 1)V Caleulate |J| = ... = 37 and fyv(u,v) =
f(U)f((ﬁ -1)11)55 =...= j’fe":!i for 0 <u <1 and 0 <v < oo. Forthe ranges of u

and v, note that for any fixed value of v = = > 0, the value of u = z/(z +y) varies from 0
to 1 as y varies from oo to 0. So the ranges of u and v do not depend on one another.

1 v
Now E(UV) = ffuvfglv(u ,v)dudv = fo U;)oouvu%e_ﬁdv] du =
1 v
f . [ j:ovze“'ﬂdv] u~1du. The inside integrand is a kernel of the Gamma(3, u) distribution.
1 1
Thus E(UV) = [, T@)ubudu =2 [[u?du=%. So Cov(U,V)=3 — §-1=¢ and

Corr(U, V) = }/(y/& - V1) = 1/4/3 ~ 05774 |
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Bivariate normal distributions

2

Suppose that X ~ Normal(x, 0%

) and Y ~ Normal(y,, , crf,) and that they are independent.

Then their joint pdfiis
(z— ',{)2 (- {)2
2: 1 - y:e:
x . e Y
;;2WU§

_ 1 B
fxy(z,y) = 7;7;0-5 e
_ 1 { L[z \2 L (v )?
- pL 20 T + oy :

More generally, a bivariate normal distribution has the joint pdf fxy(z,y) =

e oo - kg [ (S522) + (52) - 2e(55) (52)]}

Lemma N.4.14 (see pp. CB.167-168). Suppose (X,Y’) has a bivariate normal distribution
with the pdf above.

(@ X ~Normal(g, ,02).

(b) Y ~ Normal(y, ,02).

() Com(X.,Y)=p.

(d) aX +bY ~ Normal(ap, + by, ,a’02 +b*02 +2abpo,0,) for any

constants a and b,

(e) Y|X =z ~ Normal(y, + po, (%‘1) ,(1—=p)o2).

Y

LemmaN.4.15. Let a and b be any constants with a # 0. Then, X ~ Normal(x ,c?) if and
'oxlly if aX + b ~ Normal(ay + b, a%0?).

This lemma can be proved using either Theorem CB.2.1.2 or Theorem CB.2.3.5.

Partial justification of Lemma N.4.14: By appealing to Lemma N.4.15, it suffices
to consider Z = (X — u,)/o, and W = (Y — p,.)/o, and to show (a) Z ~ Normal(0, 1),
(b) W ~ Normal(0,1), (c) Corr(Z,W) = p, (d) aZ + bW = Normal(0, a® + b* — 2abp),
() W|Z = z ~ Normal(pz,1 — p?). Next one can show that the transformation from
(X,Y) to (Z,W) leads to the joint pdf

fzw(z,w) = Wll—_pz exp{ - Tll——pij [z2 T - 2pzw]} .

Part (a) can be verified by using CB(4.1.2) and the algebraic identity 22 + w? — 2pzw =

(w — p2)? + (1 — p?)z%. Part (b) follows from a similar calculation. For part (c) one can
calculate E(ZW) = f f 2w fz w(z,w)dzdw by changing the variables of integration to

s = zw and t = z (as done on p. CB.167). Part (d) can be proved using the procedure on p.
N.32. To show part (), form fw|z(w|2) = fzw(z,w)/fz(2).0

L5
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In a linear regression model for a variable Y that depends on a variable X, we consider the
distribution of Y conditional on X = z and assume that E(Y' | X = z) = a+ fz. Ifwe
assume that the joint distribution of‘ X and Y is bivariate normal, then E(Y | X = z) =

By + POy ( iy ) = (p, — po, & = ~X) 4 po, == . Thus we have
Ux
(—‘U“)a
oy Yy o
a=p, —Pu, and B= T = - = _&Y-a; _L"xx

where o,, = Cov(X,Y). Compare these population quantities with the least-squares

estimates calculated from the sample:

zz

a=7— ﬁf and ﬁ -
where S, = Y@ —EBwi—7).

caution: If we have a bivariate random vector (X ,Y) and the marginal distributions of X
and Y are both known to be normal, this does not imply that the random vector has a bivariate

normal distribﬁtion.

Multivariate distributions

Suppose we observe an experiment that produces n random variables X7, Xs,..., Xy The
vector (X1,Xa,...,Xn) is called a random vector. For example, suppose a person is
randomly selected from a population and t‘ne person’s height, weight, blood pressure, and
cholesterol level are measured. Or suppose we randomly select four people from a population
and measure their heights. These are two cases of random vectors with n = 4.

Discrete distributions

A random vector has a discrete joint distribution if there is a finite or countably infinite set C'
of vectors such that P[(Xy,Xz,...,Xn) € C] = 1. Discrete distributions are often presented
by the joint pmf,
f(z1,z2 yorvsy ) = P{ Xy s Koiass e | == (o y 8 yeresZn)]
= P[X1 =TI ,Xg =T2,4..- ,Xn = mn] 2

Probabilities can be obtained from the joint pmf as

P[(X1,XQ,...,Xn)EA] = EZ Z f(x] LY yues )

(3:1 1 L2, . 'rn)

The marginal pmf’s of X; and (Xi, X2) etc. can be obtained as
fl@) = ¥ - X fl@1,22,..-1%n),

allzy, allz,
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f($1,$2) = E Ef(x11$2ax3a---:$n);

allzs allz,

f(zlsu-:xn—'l) = E f(xl'r'":xn—l;xn)- |

all z,,
Conditional pmf~’s can be obtained as

florlos, ooon) = LRl

_ f(z1,%2,%3,..4Zn)
f($1,332|$3,»--’$n) - f(x:i,,,,,a:n) E

Expectations can be obtained as

E[g('XI)X2)--':Xn)] = E E e E g(:rlpr:'H:mn)f(ml:$21---:$n)-
all zjallzy  all z,

Lemma N.4.4 remains true with (X ,Y") replaced by (X7,X2,...,X,). Forinstance,
Elg(X;,Xo,..., Xn) + h(X1,X2,..., X,)]
= E[g(X1,X2,...,Xn)] +E[A(X1,X2,..., X0)).
Multinomial distribution

Consider a population that is divided into % categories comprising proportions py,p2,..., Pk
of the population (p; + p2 + -+ + pr = 1). Randomly select a sample of size n with
replacement. Let X; be the number of members of the sample in category j (j =1,...,k).
Then (X;,Xs,...,Xk) ~ Multinomial(n, py,p2,..., Px). (Note that the length of the
random vector is denoted by k here rather than n as above.)

Let us derive the joint pmf. For this we keep track of the order in which the sample was
selected. Let Y; be the category of the i-th member selected into the sample (i =1,...,n).
Thus (Y7,Y3,...,Y,) contains all the information that (X7, Xo,..., X}) does plus the
information about the order of selection (which is not of much interest in itself but will help us
in deriving the joint pmf that we are seeking).

The Y;’s have the advantage of being mutually independent of one another (we will discuss
mutual independence in more detail below). The X;’s are not independent because
Xi+Xo++ Xy =n,

P(}/l =j1:},2 =j2’-"’Yn:jn)
= P(Yi = j1)P(Ya = j2) -+ P(Ya = ju) [by independence]
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= PjPjp *** Pjp, -
Note that
X1 = the number of Y;’s in category 1,
Xo = the number of Y;’s in category 2,

X) = the number of Y;’s in category k.
Thus

T1

P(}fl-:j],y‘.z:jg,...,n:jn)z 2

T2 ... Tk

By y

where z; is the number of 7;’s equal to 1, z9 is the number of j;’s equalto 2, and z; is the
number of j;’s equal to k. ‘How many vectors (j1,72,-..,7n) yield the same vector
(z1,22,...,2%)? All such vectors of j;’s can be constructed by choosing z; entries to be 1,
x9 entries to be 2, and so forth up to choosing z; entries to be k. The number of ways to

- n n!
do this is ( ) = ———— . Therefore
T ,22,...,Tk 331!372!---3&:!

!
P(Xi =z, Xe=2,....Xe =2k) = Tomi A PLPY 0 P
if 1 +x9 + -+ xx = n. This is Definition CB.4.6.1.

In the case k = 2, we have

PlXi =X =) = L Py’

1! z9!

which can be rewritten as
n -
B =) = (2) P (L= p)=1

Thus we see that X; ~ Binomial(n, p;). In fact this is true for general k. The n selections
from the population, at random with replacement, can be regarded as n independent trials and
members of category 1 can be regarded as “successes”. The probability of a success in any
single trial is py .

If we regard members of categories 1 and 2 as “successes”, then we see that X + Xy ~
Binomial(n, py + p2). |
Lemma N.4.16. Suppose (X;,X2,..., X)) ~ Multinomial(n,p;,pe,...,p¢). Then
(a) X; ~ Binomial(n,p;) forall j. =
(b) X;+ X, ~ Binomial(n,p; +p,) forall j#r.
(© Cov(X;,X,)= —np;p, forall j#r.
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Justification of (c): Consider j =1 and r = 2. A trick for deriving (c) that avoids
!
the calculation of E(X1X,) = T1Ty ——2—— pFl1p22..
(X1X) Ilgﬂ?g:‘*‘“"f‘l‘k;n 192 g lzpl... 2! P Dy
following. Var(X; + X3) = Var(X;) + Var(X,) + 2 Cov(X;, Xs), so Cov(X;,Xs) =
%[Var(Xl + Xg) — Var(X;) — Var(Xy)] i %[n(Pl +p2)1-p —p)—np(1— p1) —

np(1—p) = L —npip — npip) = —npipy . O

The correlation of X; and X, is Corr(X;,Xs) = — ./ -(-i-:p%—?zl——pz) .

Continuous distributions

- pe¥ is the

A random vector has a continuous joint distribution if it has a joint pdf f(z;,zs,...,z,)
satisfying
P[(.X1 , Xo ,...,Xn) & D] = ffff(:t:l I L L ,.’L‘n)dxld.’cg ceodimg,
D

where f f “e f indicates that the integration is done within the limits specified by the event D .
D

The marginal pmf’s of X; and (X, X3) etc. can be obtained as

fl) = [f fl@i,20,...,z0)dzo - dzy,

o0 (o9}

fl@1,z2) = f"'ff($1,$2,$3,---,$n)d~’63"'d$n,

f(Il}--wxn*l) = ff(xl?“-sxn—])mn)dmn-

Conditional pmf’s can be obtained as

ot - g

o f(ml,m2,$3,.'..,$n)
o1, 2|25, ) = SpbeIe

Expectations can be obtained as

Elg(X1,Xo,...,X,)] = f f‘--fg(xl,mg,...,xn)f(ml,:rg,...,xn)dxldxg---dmn.

Lemma N.4.4 remains true with (X ,Y) replaced by (X;,Xy,...,X,) regardless of whether
the joint distribution of (X, Xs,..., X,,) is continuous, discrete, or otherwise.
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Independence
Jointly distributed random-variables X1,Xo,..., Xn are mutually independent (or simply
independent) if

P(X; € A:| X1 € A1,..., Xiz1 € Aia Xis1 € Aigtye-rrXn € An) = P(X; € Ai)
for all events Ay,...,An andall 7.

LemmaN.4.17. Xi,Xs,...,Xn areindependent if and only if
P(X, € Ay, Xz € Ao, Xn € An) = P(X1 € A1)P(Xy € Ag) -+ P(Xn € An)
for all events Ay,...,An.

When n = 2, this is Lemma N.4.7.

Lemma N.4.18. Suppose the random variables Xi,Xs,..., X, havejoint pmf or pdf
f(zy,z2,...,z,) and marginal pmf’s or pdf’s fi(z1) ,fo(z2) ..., fa(zn). Then, the
random variables are independent if and only if f(z1,22,... e me
fi(z1) fa(ze) - fu(zy) forall z1,29,...,%n.

When n = 2, this is part of Lemma N.4.8.

If X;,Xs,...,Xn areindependent and, moreover, have the same distribution with pmf or pdf
f(z), then the lemma tells us that their joint pmf or pdfis f(z1,ze,..., Fo )=

f(z1)f(@2) -+ f(mn) = _lillf(ma) .

Examples. (1) Suppose X1,Xp,...,Xn are independent random variables all having the
Normal(0, 1) distribution. Their joint pdfis

f(ﬂh,:vz,---,ﬂ:n)2 = f(fnl)lz'(ma)“'f(ﬂ?n)

1 -le 1 . z -3 »-%(z%+x%+---+z%)

= 1 _n
i T 2 =
- e o e 7——% e (2m) “e

(2) Suppose X1,Xs,...,Xn are independent random variables all having the Bernoulli(p)
distribution. Their joint pmfis
f(xl 1y L2y ’xn) = f(xl)f(xQ,)"‘f(:Cn)
= pT1(1 — p)l%1pZ2(l — p) =% o pTn(1 = p) 1
— p$1+£2+"'+xn(1 — p)n—:cl—xg— sas=lp ”
Lemma N.4.19. Suppose Xi1,Xo,... , X, areindependent random variables. Then

Blg1 (X1)g2(X2) - 9n(Xa)] = Elg1(X1)]Elg2(X2)] -+~ Blga (X))
When n = 2, this is Theorem CB.4.2.1.
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Lemma N.4.20. Suppose X;,Xs,...,X, are independent random variables with mgf’s
Mxl(t), sz(t), So— Mxn(t). Let Z=X{ 4+ X9+ -+ X,. Then Mz(t) =
M, () Mx, (t) -+ Mx, (¢).

Lemma N.4.20 follows from Lemma N.4.19 by a proof similar to the proof of Theorem
CB.4.2.2. The lemma implies that if X;,Xs,..., X, are independent and have the same
distribution with mgf Mx (¢), thenthe mgfof Z = X; + Xo +--- + X, is

Mz(t) = [Mx(®)]".

Examples. (1) Suppose X;,Xs,...,X, areindependent random variables all having the
Normal(y , o?) distribution. (For short we say that they are i.i.d.: independent and identically
distributed.) The mgf of the distribution is M (t) = eHtH50"  The mgfof Z =

Xy +Xo+ -+ Xn is [ME)]" = [eHtH 0 = entt+ino™  yhich is the mef of the
Normal(np , no?) distribution.

(2) Suppose X;,Xs,...,X, areii.d. Bernoulli(p), which has mgf M(t) =1 — p+ pet.
Then the mgfof Z = X; + X +--- + X, is [M(®)]" = (1 — p + pe*)™, which is the mgf of
the Binomial(n , p) distribution.

(3) Suppose X1,Xs,..., X, areindependent with X; ~ Normal(y;,0?). Consider Z =

a1 X1 +apXo + -+ 4+ a, X, +b. (This example includes Example (1) as a special case.)

Then the mgfof Z is Mz (t) = My, x, ()Mo, x,(t) -+ Mg, x, (t)Mp(t). Asin Theorem

CB.2.3.5, Mux(t) = Mx(at) and My(t) = eb*. Thus Mz (t) = My, (a1t)Mx, (ast) - --

My, (ant)e® = e#l(ﬂlﬂ'*'%“f(alt)zeiiz(ﬂzfﬂ%‘-"%(azt)z...e#n@nl‘-)*‘%‘?ﬁ(%&‘—)é"_’é“ -
e(@1ptazpot-Fanpn+b)t+3(afo}+ados+ - +alod)t? , which is the mgf of the

Normal(a;pq + agig ++++ + Gnpin + b,al0? + a2o2 + -+ + a202) distribution. ||

Inequalities

CB(4.7.4) (Cauchy-Schwarz Inequality). |E(XY)| < /E(X?)E(Y?).

2
Justification: This inequality follows from the fact that E[(Y - 1;:5(()2;)) X)' ]>0.0

Replacing X by X — pux and Y by Y — puy in the inequality yields |Cov(X,Y)| <
v/ Var(X)Var(Y), which is equivalent to |pxy| < 1.

For the next inequality, we need a definition.

Definition N.4.21. A function g(z) is said to be convex if, for any two points on its graph, the

line segment joining the two points lies entirely on or above the graph.

Theorem N.4.22 (Jensen's Inequality). For a convex function g(z), E[g(X)] > ¢(E[X]).
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(To be technically correct, we should specify that g(z) is defined on an interval (a,b) and
that Pla< X <b)=1))

Lemma N.4.23. Suppose g(z) is twice differentiable. It is convex if and only if g”(z) > 0

for all z (where ¢g”(z) denotes the second derivative of g(z)).

Examples. (1) g(z) = z%. Check that ¢'(z) = 2z, g”(z) = 2 > 0, so the function is
convex. Therefore, E[X?] > (E[X])?. This simply says that Var(X) > 0.
(2) g(z) =az+0b. Check that ¢'(z) = a, g”(z) =0 > 0, so the function is convex.
In this case, the line segment between two points on the graph lies on, rather than above, the
graph. By Jensen's Inequality, E(aX +b) > aE(X) +b. In this case they are actually equal.
(3) glz)= -:L for z > 0. Check that g'(z) = - 1 ”(a:) 3 >0 for = > 0, so the
functiow: is convex. Therefore, if P(X > 0) =1, then E( X) > E( X A special case occurs
when X has a discrete distribution with all its probability on n equally likely points. That is,
suppose P(X =a;) =P(X =ay) =--- =P(X =a,) = 1. Then E(X) =
a1(d)+ad)+-+a.(d) = %(al +ag+-+ay) = the arithmetic mean of the a;’s.

1 .
And E(X-)— i(1)+al2(1)+ +l(1)— ‘(al + 5+ + ). The quantity
l/E(X) = n/(a1 £ sl o ) is called the harmomc mean ofthe a;’s. Jensen's
Inequality implies that 1 / E( X g E(X ); that is, the harmonic mean is always less than or

equal to the arithmetic mean. ||

Partial justification of Jensen's Inequality: Consider the case when X isa

discrete random variable with only two possible values, each having probability % . That is,
P(X = a1) =P(X = a) = }. Then E(X) = a;(}) + ap(}) = 22 | and E[g(X)] =
gla)(3) + g(aq)(%) = Ml—;—g(ﬂl . Jensen's Inequality says g(al);g(a&) > g( al—;az N

Why should this be true? Consider a graph of the function y = g(z). Two points on the
graph are (a;,g(a;)) and (ag,g(as)). Above the value = = 21%3 , the line segment joining

these two points has height g(a_l%q@z_) . The convexity of g(z)implies that the line segment + alas)

g(a1)+g(as)
2

lies on or above the graph. So the height should be greater than or equal to the ok (a)

height of the graph above the value z = gl-g—al , which is 9(21:_;_31) .40 9(a,)
Theorem N.4.24 (Markov's Inequality). Suppose P(Y > 0) = 1. Then, forany » > 0 -

E(Y) o]
szng ==

Ha
Justification: Define Z=1ifY >rand Z=0ifY <r. Now, E(Y) = 4, A% a,
EEY|Z)=EX|Z=1P(Z=1)+EY |Z=0P(Z=0)2EY|Z=1)P(Z=1) = ’
EY|Y>2r)P(Y >2r)>2rP(Y >r).0




