Concordance Correlation Coefficient & Macro

March 1, 2016

Statisticool.com

Outline

- Example
- Ways to assess agreement
- Definition of concordance correlation coefficient
- linscon.sas macro input and output
- References

Example

- Manual blood pressure cuff is the "gold standard"
- Can using the manual cuff be replaced by using a cheaper electronic cuff?
- The answer is "Yes" if the pairs (of readings from the cuffs on the same individual) are tightly packed around the 45 degree line

Example (cont.)

Manual Cuff vs. Electronic Cuff

Systolic Blood Pressure (mmHg)

Ways to Assess Agreement

- Many ways exist to assess agreement
 - compare definitions of items
 - compare counts of cases in particular classes
 - Pearson correlation coefficient
 - paired t-test
 - linear regression: test if intercept = 0 and slope = 1
- These ways are OK, but they don't fully test for agreement

Ways to Assess Agreement (cont.)

- Pearson correlation coefficient, r
 - $-(x_i, y_i = x_i + 1000)$
 - $-\hat{\rho} = 1$, but it would not be wise to replace x by y
 - ρ only measures precision, not accuracy
- Paired t-test $\begin{cases} H_0: \mu_x = \mu_y \\ H_1: \mu_x \neq \mu_y \end{cases}$
 - { (1,3), (2,3), (3,3), (4,3), (5,3) }
 - fail to reject H_0 , but it would not be wise to replace x by y

Ways to Assess Agreement (cont.)

- Linear regression
 - agreement would be points lying on line going through origin at 45 degree angle (the Y=X line)
 - linear regression can fail depending on the amount of scatter

Ways to Assess Agreement (cont.)

 $H_0: b_0 = 0 \text{ and } b_1 = 1$

Concordance Correlation Coefficient

- The concordance correlation coefficient r_c is
 - the correlation between two variables that fall on the 45 degree line through the origin
 - a product of
 - precision (Pearson correlation coefficient, r) and
 - accuracy (closeness to 45 degree line)

• Consider the expected squared difference

$$E\left[(X-Y)^{2}\right] = \left(\mu_{x}-\mu_{y}\right)^{2} + \left(\sigma_{x}^{2}+\sigma_{y}^{2}-2\sigma_{xy}\right) =$$

$$(\mu_x - \mu_y)^2 + (\sigma_x - \sigma_y)^2 + 2(1 - \rho)\sigma_x\sigma_y$$

• If X and Y have perfect agreement, this is 0

• To scale between -1 and 1

$$\rho_c = 1 - \frac{E[(X - Y)^2]}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$

• The sample estimate is

$$\hat{\rho}_{c} = \frac{2s_{xy}}{s_{x}^{2} + s_{y}^{2} + (\bar{x} - \bar{y})^{2}}$$

where

- Properties
 - $-1 \le -|r| \le r_c \le |r| < 1$
 - $r_c = 0$ if and only if r = 0
 - $r_c = r$ if and only if $s_x = s_y$ and $m_x = m_y$
 - $r_c = \pm 1$ if and only if $r = \pm 1$ and $s_x = s_y$ and $m_x = m_y$
 - I.e. each set of (X_i,Y_i) is in perfect positive or negative agreement
 { (1,1), (2,2), (3,3), (4,4), (5,5) }, or { (5,1), (4,2), (3,3), (2,4), (1,5) }

Macro

- %linscon(inds=dataset, x=xvar, y=yvar, labelX='X', labelY='Y', labelLegend='X vs Y', gtitle="Lin's Concordance vs Pearson Correlation");
- Also specify *nboot*, the number of bootstrap replications (for confidence intervals if n < 30)

Lin's Concordance vs Pearson Correlation

Pearson Product Moment Correlation Coefficient = 0.8021

Linis Concordance Correlation Coefficient = 0.3205, Bootstrap 95% Confidence Interval: (0.0000, 0.5454)

Summary

- assessing agreement is important
- r_c can be a more appropriate way to measure agreement compared to standard methods
- r_c has straightforward graphical interpretation
- linscon.sas macro is easy to use and freely available

References

- Lawrence, Lin. (1989). A Concordance Correlation Coefficient to Evaluate Reproducibility. *Biometrics, Vol 45, Mar. 1989, pp.* 255-268
- Barnhart, Huiman, et. al. (2002). Overall Concordance Correlation Coefficient for Evaluating Agreement Among Multiple Observers. *Biometrics, Vol 58, Dec. 2002, pp. 1020-1027*
- Cheng, Nancy (2004), linscon.sas, http://cando.ucsf.edu/resources/software/linscon.sas.txt

Contact Information

Statisticool.com

justin@statisticool.com